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PARAMETER ESTIMATION  

METHOD OF MOMENTS AND PERCENTILE MATCHING 

• Random sample ( )1 2, , , nX X X�  where all n observations came from the same parametric distribution, 

( | )F x θ . θ  is a vector (length p) of unknown parameters. 

• Let ( )( ) |k

k E Xµ θ θ′ = . Using a random sample of independent observations, the empirical estimate of 

the kth moment is 
1

n k

jj

k

x

n
µ =′ =

∑
� , i.e. the kth moment of the sample (kth empirical moment). 

• Let ( )gπ θ  be the 100 %g  percentile of the random variable X , that is, ( )( )|gF gπ θ θ = . If F  is 

continuous this equation will have, at least, one solution. The empirical estimate of this percentile is gπ� , 

the corresponding percentile of the random variable. 
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Definition 15.1 – A method of moment estimate of θ  is any solution of the p equations ( )k kµ θ µ′ ′= � , 

1,2, ,k p= � . 

• Comments: 

o Although definition 15.1 can be generalized to consider any set of moments, results are usually 

better when using the smallest positive integer moments. 

o Sometime we must use higher moments to solve the system (for instance ~ ( , )X U θ θ−  cannot be 

solved using the first moment) 

o It is necessary to check that the relevant moments exist. 

o There is no guarantee that the equations will have a solution or, if there is a solution, that it will be 

unique 

 

Example 15.1 – Use the method of moments to estimate parameters for the exponential, gamma and 

Pareto distributions for Data Set B from chapter 13. 

The exponential distribution has one parameter but the Pareto and the Gamma have 2 parameters 

each, so we will need 2 empirical moments. 
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20

1

1 1424.4
20

jj
x

xµ =′ = = =
∑

�   and  

20 2

1

2 13238441.9
20

jj
x

µ =′ = =
∑

�  

Exponential distribution: ( )E X θ= , then 1424.4θ =�  

Gamma Distribution: ( )E X αθ= , 1α > ; ( )2 2( ) 1E X α α θ= + , 2α > , then we must solve the system 

( ) 2

1424.4

1 13238441.9

α θ

α α θ

=


+ =
. The solution is  

0.181

1424.4
7869.61

α

θ
α

=



= =

�

�
�

. 

 

Pareto distribution:  ( )
1

E X
θ

α
=

−
; 

( )( )

2
2 2

( )
1 2

E X
θ

α α
=

− −
. The system is 

( )

( )( )

2

1424.4
1

2
13238441.9

1 2

θ

α

θ

α α


= −


 =
 − −

 and then 
2.442

2053.985

α

θ

=


=

�

�
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Estimated distributions 

 

 Exponential Gamma Pareto 

^

Pr( 1000)X > =  0.4956  0.2686  0.3796  

^

Pr( 5000)X > =  0.0299  0.0850  0.0491 

^

Pr( 50000)X > =  
165.69 10−×  56.73 10−×  43.73 10−×  
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Definition 15.2 – A percentile matching estimate of θ  is any solution of the p equations  ˆ( )
k kg gπ θ π= , 

1,2, ,k p= � , where 1 2, , , pg g g�  are p arbitrarily chosen percentiles. From the definition of percentile, the 

equations can be written as ( )ˆ |
kg kF gπ θ = , 1,2, ,k p= � . 

• Comments: 

o There is no guarantee that the equations will have a solution or, if there is a solution, that the solution 

is  unique; 

o  For discrete random variables percentiles are not always well defined;  

o  When using empirical percentiles, i.e. percentiles calculated from the empirical distribution, the 

situation could be controversial. Most of the time we need an interpolation scheme but, except for 

the median, there is no “consensual” solution (Hyndman and Fan (1996) present nine different 

methods and the function quantile of the R program allows us to get the percentiles using any of 

these methods). In this course we will use Definition 15.3 (type=6  for the quantile function) 
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Definition 15.3 – The smoothed empirical estimate of a percentile is found by 

( ) ( 1)ˆ (1 )g j jh x h xπ += − +  where ( 1)j n g= +   , ( 1)h n g j= + − ,     indicates the greatest integer function  

and (1) (2) (3) ( )nx x x x≤ ≤ ≤ ≤�  are the order statistics from the sample. 

• Comments: 

o Unless the sample has two or more data points with the same values, no two percentiles will have 

the same value. 

o We can only estimate percentile for 1/ ( 1) / ( 1)n g n n+ ≤ ≤ + .  

o The choice of which percentiles to use leads to different estimates. This is a strong point against the 

percentile matching method except when there is a reason to choose a particular set of percentiles. 
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Example 15.2 – Use percentile matching to estimate parameters for the exponential and Pareto 

distribution for Data set B. 

Without more information the choice of the percentiles is quite arbitrary. We will follow Loss Models. 

Exponential: use the median (the parameter is the mean, i.e. a localization parameter). More 

adequately the idea should lead us to use percentile 11 0.6321e
−− �   since ( ) 1Pr 1X eθ −< = − . 

Sample median: 0.5ˆ 0.5 384 0.5 457 420.5π = × + × =  

We must solve the equation 

 0.5
ˆ ˆ ˆˆ0.5 ( | ) 0.5 1 exp( 420.5 / ) ln 2 420.5 / 606.65F π θ θ θ θ= ⇔ = − − ⇔ = ⇔ =  

 

Pareto: use the 30
th

 and the 80
th

 percentiles. 

30
th

: 21 0.3 6j = × =   ;  21 0.3 6 0.3h = × − = ; 0.3ˆ 0.7 161 0.3 243 185.6π = × + × =  

80
th

: 21 0.8 16j = × =   ;  21 0.8 16 0.8h = × − = ; 0.3ˆ 0.2 1193 0.8 1340 1310.6π = × + × =  
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The equations are 

ˆ

ˆ

ˆ ˆ
ˆ0.7 ln(0.7) ln

ˆ ˆ185.6 185.60.3 (185.6 | , )

0.8 (1310.6 | , ) ˆˆ
ˆln(0.2) ln0.2 ˆˆ 1310.61310.6

F

F

α

α

θ θ
α

θ θθ α

θ α θθ α
θθ

    
 = =   

+ +=      
⇔ ⇔  

=     
=  =    ++   

 

That is 

ln(0.7) ln(0.7)
ˆ ˆ

ˆ ˆ ˆ ˆln( ) ln(185.6 ) ln( ) ln(185.6 )

ˆ ˆ ˆ ˆln(0.2) ln( ) ln(1310.6 ) ln(0.2) ln( ) ln(1310.6 )
0

ˆ ˆ ˆ ˆln(0.7) ln(0.7)ln( ) ln(185.6 ) ln( ) ln(185.6 )

α α
θ θ θ θ

θ θ θ θ

θ θ θ θ

 
= = − + − + 

⇔ 
− + − + = − =

 − + − + 

 

This system can be solved numerically. 

Using Excel’s solver we obtain ˆ 715.0315θ =  for the second equation and, reporting this value in the 

first equation we get ˆ 1.545589α =  (see next slide) 

Of course the choice of different percentiles leads to different estimates.  

Exercise: Use percentiles 0.1 and 0.9, obtain θ̂  and α̂ , and comment. 
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Using EXCEL’s solver  
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MAXIMUM LIKELIHOOD ESTIMATION 

• Why ML estimation? 

o More efficient estimators 

o To cover some annoying cases: An important limitation of moment and percentile matching 

estimators is that the observations are from the same random variable. If, for instance, half the 

observations have a deductible of 50 and the other half a deductible of 100 it is not clear to what 

the sample mean should be equated.  

o More calculus involved 

o Sometimes ML estimators are quite sensitive to “extreme” observations 

• To use Maximum Likelihood Estimators  

o We must have a data set with n events,  1 2, , , nA A A� , where jA  is whatever was observed for the 

jth observation (usually jA  is a value or an interval) 

o The variables 1 2, , , nX X X�  behind the events 1 2, , , nA A A�  do not need to have the same 

probability distribution but they must be independent and their distribution must depend on the 

same parameter vector θ . 
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• Definition 15.4 – The likelihood function is 
1

( ) Pr( | )
n

j jj
L X Aθ θ

=
= ∈∏  and the maximum likelihood 

estimate of θ  is the vector that maximizes the likelihood function. 

• Comments: 

o Notation – Usually the likelihood function is written as 1 2( | , , , )nL x x xθ � . Because observed data 

can take many forms, we will write ( )L θ  without clarifying the conditioning values. 

o Independence among events – As the events  1 2, , , nA A A�  are assumed independent, the 

likelihood is the probability, given a particular value of θ , of observing what was observed, since 

1 1 2 21
( ) Pr( | ) Pr( , , , | )

n

j j n nj
L X A X A X A X Aθ θ θ

=
= ∈ = ∈ ∈ ∈∏ � . 

o Theoretical – When the probabilistic model is continuous and the observed event is a point, 

, we know that Pr( | ) 0j jX A θ∈ =  and we will use the density function. The rationale for 

such a procedure corresponds to interpret the observed value as being in a neighborhood of jx  and 

to approximate the probability Pr( | )j j jx X xε ε θ− < < +  by means of 2 ( | )jf xε θ , where 

( | )jf x θ  is the density function at jx . Dropping out the multiplicative constants leads to use the 

density ( | )jf x θ  as the contribution to the likelihood function. 
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o Multiplicative constants that are independent of the elements of the vector θ  can be removed 

from the likelihood function since they will not affect the maximum likelihood estimate. Removing 

such constants does not change the solution but it will change the value of the likelihood. 

o There is no guarantee that the likelihood function has a maximum at eligible parameter values. 

When maximizing the likelihood function the existence of local maxima can hide the global 

maximum.  

o Log-likelihood – In many situations it is easier to use the log-likelihood, that is, to maximize 

( )
1

( ) ln ( ) ln Pr( | )
n

j jj
L X Aθ θ θ

=
= = ∈∑�  instead of ( )L θ  (as the natural logarithm is a strictly 

increasing function the solution is unchanged). 

o ( )ln Pr( | )j jX A θ∈  is called the individual contribution of observation j to the log likelihood. 

o In many situations numerical methods are needed. 
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COMPLETE INDIVIDUAL DATA  

When there is no truncation and no censoring and the value of each observation is recorded, it is easy to 

write the log-likelihood function, 
1

( ) ln ( | )
j

n

X jj
f xθ θ

=
=∑� .  

• Example 15.4 – Using Data set B, determine the maximum likelihood estimate for an exponential 

distribution, for a gamma distribution where α  is known to equal 2, and for a gamma distribution 

where both parameters are unknown. 

Exponential distribution 

1 /( | ) xf x e θθ θ − −= , 0x > , 0θ > . 

( ) ( )/1 1

1 1
( ) ln lnj

n nx

jj j
e x

θ
θ θ θ θ

−− −

= =
= = − −∑ ∑�  

( )1 2 1 2

1
( )

n

jj
x n n xθ θ θ θ θ− − − −

=
′ = − + = − +∑�  

1 2( ) 0 0 n n x xθ θ θ θ− −′ = ⇔ = − + ⇔ =�  

( ) ( )2 3 2 1

1
( ) 2 1 2

n

jj
x n xθ θ θ θ θ− − − −

=
′′ = − = −∑�  

As } 2( ) 0
x

n
θ

θ θ −

=
′′ = − <�  we get ˆ 1424.4xθ = =  (same estimate as with the method of moments) 
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Gamma distribution with 2α =  - similar to the previous case 

Gamma distribution with unknown parameters – numerical maximization 

1 /

( | , )
( )

xx e
f x

α θ

α
α θ

θ α

− −

=
Γ

, 0x > , , 0α θ > . 

( ) ( )1

1 1
( , ) ln ( | , ( 1)ln ln ln ( )

n n

j j jj j
f x x xα θ α θ α α θ θ α−

= =
= = − − − − Γ∑ ∑�  

To maximize in order to α  requires the derivative of ln ( )αΓ  which is not an explicit function (we can 

obtain a solution in order to θ , /xθ α= , but the problem remains). Consequently we need to use 

numerical techniques. 

We illustrate the procedure using Microsoft EXCEL solver and R. 
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EXCEL  
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Then ˆ 0.55616α =  and ˆ 2561.14θ = . If necessary, we can use a different starting point and/or we can 

add constraints. 
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Using R – Two among many solutions. 

> x=c(27,82,115,126,155,161,243,294,340,384,457,680,855,877,974, 

+      1193,1340,1884,2558,15743) 

> mean(x) 

[1] 1424.4 

>  

> # 1ST SOLUTION: USE FUNCTION nlm 

> # As nlm minimizes a function we introduce minus the log-lik  

> minusloglikgamma=function(param,x){ 

+   alpha=param[1]; theta=param[2] 

+   -sum(dgamma(x,shape=alpha,scale=theta,log=TRUE)) 

+   } 

> param.start=c(1,1000) # starting values – important point  

> out1=nlm(minusloglikgamma,param.start,x=x)  # Options available 

Warning messages: 

1: In dgamma(x, shape, scale, log) : NaNs produced 

2: In nlm(minusloglikgamma, param.start, x = x) : 

  NA/Inf replaced by maximum positive value 

>  
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out1 

$minimum 

[1] 162.2934       # Minus the log-likelihood 

$estimate 

[1]    0.556156 2561.146495 

$gradient 

[1] -8.273560e-05 -6.824815e-09 # Check the convergence 

$code 

[1] 1         # Check the convergence 

$iterations 

[1] 26 

>  

> # 2ND SOLUTION: USE FUNCTION maxLik, LIBRARY maxLik 

> # As maxLik maximizes a function we introduce the log-lik  

> loglikgamma=function(param,x){ 

+   alpha=param[1]; theta=param[2] 

+   sum(dgamma(x,shape=alpha,scale=theta,log=TRUE)) 

+   } 

> # param.start has already been defined 

> library(maxLik)  

> out2=maxLik(loglikgamma,start=param.start,x=x)   

There were 50 or more warnings (use warnings() to see the first 50) 
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> out2 

Maximum Likelihood estimation 

Newton-Raphson maximisation, 22 iterations 

Return code 1: gradient close to zero 

Log-Likelihood: -162.2934 (2 free parameter(s)) 

Estimate(s): 0.5562315 2560.365  

 

 

Comments: 

• Both functions are based on the Newton-Raphson method; 

• We can use the gradient and the Hessian matrix to improve results; 

• We can control the process changing some parameters values (tolerance, maximum number of 

iterations, …); 

• Other procedures are available to maximize the log-likelihood.  
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COMPLETE GROUPED DATA 

• We must rectify the likelihood in order to consider the mass probability associated with each group.  

• As before, let us assume that there are k  groups and that group j , with jn  observations, is limited by 

values 1jc − and jc . The likelihood function is ( )11
( ) ( | ) ( | )

jnk

j jj
L F c F cθ θ θ−=

= −∏  and the log likelihood 

is ( )11
( ) ln ( | ) ( | )

k

j j jj
n F c F cθ θ θ−=

= −∑�  

• Example 15.5 – From Data Set C, determine the maximum likelihood estimate of an exponential 

distribution. 

/( | ) 1 xF x e θθ −= − ;  1 / /

1( | ) ( | ) j jc c

j jF c F c e e
θ θ

θ θ −− −

−− = −  

The log-likelihood is then 

( ) ( ) ( )7500/ 7500/ 17500/ 300000/( ) 99 ln 1 42 ln 3 ln 0e e e e
θ θ θ θθ − − − −= × − + × − + + × −� �  

Using Microsoft Excel or another numerical procedure to maximize the log-likelihood we get 

ˆ 29720.77θ =  and ˆ( ) 406.03θ = −� . 

Exercise: check the results using EXCEL or R 
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TRUNCATED AND CENSORED DATA 

• Censored data: Non censored observations are individual points and censored observations are grouped 

data.  

• Truncated data: More challenging. We must keep in mind that some values of the r.v. cannot be  

observed. 

• Klugman, Panjer and Willmot (Loss Models) pointed out that there are two ways to proceed but it is 

important to underline that these ways correspond to two different models. Note that in both 

situations we only observe the values above the truncation points.  

First model – We want to estimate the distribution of the truncated values; 

Second model – We want to estimate the model behind the values without truncation (more interesting 

case);  

• Example 15.6 - Assume the values in Data Set B had been truncated from below at 200. Using both 

methods estimate the value of α  for a Pareto distribution with 800θ =  known. Then use the model to 

estimate the cost per payment with deductibles of 0, 200 and 400. 

As data has been truncated at 200 we only consider observations above 200 (14 observations)  
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First model – Shift the data by subtracting 200. In this model we will consider that the shifted data follow a 

Pareto distribution with unknown α  and 800θ = . The density and the log-likelihood are  

( )
1

800
( | , 800)

800
f x

x

α

α

α
α θ

+
= =

+
, 0x > , 0α >  ( )

1
( ) ln ln800 ( 1)ln(800 )

n

jj
xα α α α

=
= + − + +∑�  

1
( ) ln800 ln(800 )

n

jj

n
n xα

α =
′ = + × − +∑�   

1

( ) 0
ln800 ln(800 )

n

jj

n

n x
α α

=

′ = ⇔ =
− × + +∑

�  

We get ˆ 1.348191α = . Then, using this setup our estimate is that, when a deductible of 200 is in 

force, the cost per payment follows a Pareto distribution with ˆ 1.348191α =  and 800θ = . The 

expected value of a payment is 2297.59 = 800/(1.348191-1). 

Because data have been shifted it is not possible to estimate the cost with no deductible.  

For a deductible of 400, we have to impose a new deductible of 200 in our shifted data. The expected 

cost per payment is given by (theorem 8.3): 

( ) ( ^ 200)
( 200 | 200)

1 (200)

E X E X
E X X

F

−
− > =

−
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Using Loss Models’ appendix we get  

( )
1

E X
θ

α
=

−
 and 

1

( ^ 200) 1
1 200

E X

α
θ θ

α θ

−  
= −   − +  

 

Then 

0.348191

1.348191

800 800

( ) ( ^ 200) 0.348191 200 800
( 200 | 200) 2871.90

1 (200) 800

200 800

E X E X
E X X

F

 
×  − + − > = = ≈

−  
 

+ 
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Second model – The purpose is to fit a model for the original population, knowing that data were 

truncated at 200. The density of the observed values is now ( 200x > , 0α > ) 

( )

( )
( )

1

1

800

800( | , 800) 1000
( | , 800)

1 (200 | , 800) 800 800

800 200

xf x
g x

F x

α

α α

α α

α

α

α θ α
α θ

α θ

+

+

+=
= = = =

− = +

+

 

Note that the values jx  are the original ones (except those below 200 that are not observed). 

( )
1

( ) ln ln1000 ( 1)ln(800 )
n

jj
xα α α α

=
= + − + +∑�  

1 1

1
( ) ln1000 ln(800 ) ln1000 ln(800 )

n n

j jj j

n
x n xα

α α= =

 ′ = + − + = + × − + 
 

∑ ∑�  

1

1

( ) 0 ln1000 ln(800 )
ln1000 ln(800 )

n

j nj

jj

n n
n x

n x
α α

α =

=

′ = ⇔ = − × + + ⇔ =
− × + +

∑
∑

�  

We get ˆ 1.538166α = , i.e. the cost per payment without deductible follows a Pareto distribution 

with ˆ 1.538166α =  and 800θ = . 
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The introduction of a deductible of 200 originates an expected cost per payment given by   

0.538166

1.538166

800 800

( ) ( ^ 200) 0.538166 200 800
1858.16

1 (200) 800

200 800

E X E X

F

 
×  − + = ≈

−  
 

+ 

 

As it is natural (we are using a different set of hypothesis), this value is different from that obtained 

with the first model. Note also that we can estimate that only ˆ0.7095 1 (200 | , )F α θ= −  of the claims 

are reported. 

The introduction of a deductible of 400 originates an expected cost per payment given by   

0.538166

1.538166

800 800

( ) ( ^ 400) 0.538166 400 800
2229.80

1 (400) 800

400 800

E X E X

F

 
×  − + = ≈

−  
 

+ 
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Example 15.7 – Determine Pareto and gamma models for the time to death for Data Set D2. 

In Data Set D2 we faced 4 different situations: 

  

Situation 

Contribution to 

the likelihood 

Meaning of  

1 Subjects are observed from time d=0 and died 

at time x  (observed during the period of the 

study). No truncation nor censoring.
 

( | )f x θ  Time of death 

2 Subjects are observed at time d=0 and didn’t 

die during the period of the study. No 

truncation but censoring.
 

1 ( | )F x θ−  Time of censoring 

3 Subjects are observed from time d>0 

(truncation) and died at time x (no censoring)
 

( | )

1 ( | )

f x

F d

θ

θ−
 

Time of death 

4 Subjects are observed at time t>0 (truncation) 

and didn’t die during the period of the study 

(censoring)
 

1 ( | )

1 ( | )

F x

F d

θ

θ

−

−
 

Time of censoring 
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It is straightforward to write the contributions to the likelihood (or to the log-likelihood). For instance: 

Obs 1 – 0d =  (no truncation); 0.1x =  (censoring): 1 (0.1)F−   

Obs 4 – 0d =  (no truncation); 0.8x =  (no censoring): (0.8)f   

Obs 31 – 0.3d =  (truncation); 5x =  (censoring): ( ) ( )1 (5.0) / 1 (0.3)F F− −   

Obs 33 – 1.0d =  (truncation); 4.1x =  (no censoring): ( )(4.1) / 1 (1.0)f F−   

Sometimes it is useful to get a single expression for all the situations. Using d=0 for the no truncation 

situation and noting that (0 | ) 0F θ =  we can rewrite the contribution to the likelihood from cases 1 and 2 

as 
( | )

1 ( | )

f x

F d

θ

θ−
 and  

1 ( | )

1 ( | )

F x

F d

θ

θ

−

−
 respectively (with d=0 for both cases). Then we define a dummy variable, v, 

assuming value 1 when the x  value corresponds to a death (0 otherwise) and we write the likelihood as  

1

(1 ) (1 ( | ) ( | )
( )

1 ( | )

n j j j j

j
j

v F x v f x
L

F d

θ θ
θ

θ=

− × − + ×
=

−
∏   

and the log likelihood as  ( ) ( )( )1
( ) ln (1 ) (1 ( | ) ( | ) ln 1 ( | )

n

j j j j jj
v F x v f x F dθ θ θ θ

=
= − × − + × − −∑� . 

Now you can compute a solution using EXCEL or R. Exercise: Do it using EXCEL 
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gamma model (using R).  

> d=c(rep(0,30),0.3,0.7,1.0,1.8,2.1,2.9,2.9,3.2,3.4,3.9) 

> x=c(0.1,0.5,0.8,0.8,1.8,1.8,2.1,2.5,2.8,2.9,2.9,3.9,4.0,4.0,4.1,4.8,4.8,4.8, 

+     rep(5.0,12),5.0,5.0,4.1,3.1,3.9,5.0,4.8,4.0,5.0,5.0) 

> v=c(rep(0,3),1,rep(0,5),1,1,0,1,0,0,1,rep(0,16),1,1,rep(0,3),1,0,0) 

>  

> minusloglikgamma1=function(theta){ 

+   -sum(log((1-v)*(1-pgamma(x,shape=theta[1],scale=theta[2],log=FALSE))+ 

+         v*dgamma(x,shape=theta[1],scale=theta[2],log=FALSE))- 

+         log(1-pgamma(d,shape=theta[1],scale=theta[2],log=FALSE))) 

+   } 

>  

> theta.start=c(3,2) 

> out=nlm(minusloglikgamma1,theta.start) 

> out 

$minimum 

[1] 28.52685 

$estimate 

[1] 2.616737      3.311384 

$gradient 
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[1] 1.026956e-05 3.390297e-06 

$code 

[1] 1 

$iterations 

[1] 14 

The solution is then ˆ 2.616737α =  and ˆ 3.311384θ = . 

Pareto model  

> minusloglikPareto1=function(theta){ 

+   -sum(log((1-d)*(x+theta[2])^(-theta[1])+d*(x+theta[2])^(-theta[1]-1))- 

+        theta[1]*log(1+theta[2])) 

+   } 

> theta.start=c(3,2) 

> outPareto=nlm(minusloglikPareto1,theta.start) 

Error in nlm(loglikPareto1, theta.start) :  

  non-finite value supplied by 'nlm' 

In addition: There were 50 or more warnings (use warnings() to see the first 50) 

> 

We are unable to find a solution in this set up.  
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VARIANCE AND INTERVAL ESTIMATION 

 

• It is not easy to determine the variance of the maximum likelihood estimators. In most situations we 

need to approximate the variance which can be done when “mid regularity conditions” are verified. 

There are many ways to write those conditions.  

• Theorem 15.5 – Assume that the pdf (pf in the discrete case) ( | )f x θ  satisfies the following for θ  in an 

interval containing the true value (replace integrals by sums for discrete variables): 

i. ln ( | )f x θ  is three times differentiable with respect to θ . 

ii. ( | ) 0f x dxθ
θ

∂
=

∂∫  - This formula implies that the derivative may be taken outside the integral 

and so we are just differentiating the constant 1 (the main idea is that we can swap the 

derivation with the integration - the limits of the integral cannot be functions of θ ). 

iii. 
2

2
( | ) 0f x dxθ

θ

∂
=

∂∫
 - This formula is the same concept for the second derivative 
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iv. 0)|(ln)|(
2

2

<
∂

∂
<∞− ∫ dxxfxf θ

θ
θ  - This inequality establishes that the indicated integral exists 

and that the expected value of the second derivative of the log likelihood is negative. 

v. There exists a function ( | )f x θ  such that 

( ) ( | )H x f x dxθ < ∞∫  with )()|(ln
3

3

xHdxxf <
∂

∂
∫ θ

θ
. 

This inequality guaranties that the population is not overpopulated with regards to extreme 

values. 

Then the following results hold: 

i. As n → ∞ , the probability that the likelihood equation ( 0)( =′ θL ) has a solution goes to 1. 

ii. As ∞→n , the distribution of the mle ˆ
nθ  converges to a normal distribution with mean θ  and 

variance such that 1)ˆvar()( →nI θθ  where 

2

2

2

)|(ln)|(ln)( 








∂

∂
=









∂

∂
−= θ

θ
θ

θ
θ XfEnXfEnI  
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o Comments to Theorem 15.5  

o The quantity )(θI  is called Fisher’s information (of the entire sample = ( )n θℑ in “Review of …”) 

o The second statement can be written as  )1;0(~
)(

ˆ

2/1
n

I

�

−

−

θ

θθ
  

o The theorem assumes an i.i.d. sample. A more general version of the result can be established and 

uses the log-likelihood function, that is,   

2

21212

2

),,,|(),,,|()( 








∂

∂
=









∂

∂
−= nn XXXEXXXEI ���� θ

θ
θ

θ
θ  

o If there is more than one parameter, the result can be generalized and the maximum likelihood 

estimators will follow an asymptotic multidimensional normal distribution. ( )I θ  is now a matrix 

with (r,s) element given by 

  
2

, 1 2( ) ( | , , , )r s n

r s

I E X X Xθ θ
θ θ

 ∂
= −  

∂ ∂ 
� �  
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o The inverse of Fisher’s information matrix is the Cramér-Rao lower bound for the variance of 

unbiased estimators of θ , that is to say, no unbiased estimator is asymptotically more accurate 

than the maximum likelihood estimator. 

o When Fisher’s information matrix depends on θ  we estimate it using ( )θ̂I . When ( )θ̂I  is difficult to 

obtain we can approximate it using the observed information  ( )ˆ ˆ( )I Hθ θ≈ − , i.e. using the Hessian 

matrix of the log likelihood at θθ ˆ=  

o Example 15.9 – Estimate the covariance matrix of the mle for the lognormal distribution. Then apply 

this result for Data set B. 

Note: When using the lognormal it is usually more adequate to take logarithms of the observed values 

and to use the normal (gaussian) distribution.  
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Taking expected values 

22

2

σµ

n
E −=









∂

∂ �
   

( )
0

ln
2

1 3

2

=
−

−=








∂∂

∂
∑ =

n

j

jXE
E

σ

µ

σµ

�
 

( )
2

2 2

2 2 4 2 4 21 1

ln 2
3 3

n nj

j j

E Xn n n
E

µ σ

σ σ σ σ σ σ= =

− ∂
= − = − = − 

∂ 
∑ ∑

�
 



 

35 

 

Fisher’s information matrix and lower bound 

( )

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
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
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As the information matrix depends on the parameter σ  we must estimate the matrix. First we estimate 

µ  and σ  (for this purpose only the estimation of σ  is necessary)  
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And we will use the asymptotic covariance matrix 

( ) ( )

2
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ˆ 0
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Now using Data Set B we get (Note that the number of observations is too low to use an asymptotic 

approximation) 

> # Example 15.9 - solution following the book 

> x=c(27,82,115,126,155,161,243,294,340,384,457,680,855,877,974,1193,1340,1884,2558,15743) 

> n=length(x);  mu=sum(log(x))/n;  sig2=sum((log(x)-mu)^2)/n; sig=sqrt(sig2) 

> mu; sig2; sig 

[1] 6.137878 

[1] 1.930456 

[1] 1.389408 

> I=matrix(c(n/sig2,0,0,2*n/sig2),nrow=2,byrow=TRUE) 

> I 

         [,1]       [,2] 

[1,] 10.36025   0.00000 

[2,]  0.00000  20.72049 

> mat_V=solve(I) 

> mat_V 

          [,1]        [,2] 

[1,] 0.0965228  0.0000000 

[2,] 0.0000000  0.0482614 
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Example 15.10 – Estimate the covariance matrix in example 15.9 using the observed information 

> # example 15.10 - Following the book 

> sig3=sig2*sig; sig4=sig2*sig2; 

> H=matrix(c(-n/sig2,-(2/sig3)*sum(log(x)-mu),-(2/sig3)*sum(log(x)-mu), 

n/sig2-(3/sig4)*sum((log(x)-mu)^2)),nrow=2,byrow=TRUE) 

> H 

              [,1]            [,2] 

[1,] -1.036025e+01  -3.973669e-15 

[2,] -3.973669e-15  -2.072049e+01 

> matV_H=solve(-H) 

> matV_H 

              [,1]            [,2] 

[1,]  9.652279e-02  -1.851064e-17 

[2,] -1.851064e-17   4.826140e-02 

>  

> #using numerical optimization 

>  

> minuslogliklognorm=function(theta){ 

+   -sum(-log(x)-log(theta[2])-0.5*log(2*pi)-0.5*(( (log(x)-theta[1]) / theta[2] )^2)) 

+   } 
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> # Be aware of the starting point!  

> # Numerical optimization could be erroneous with the zeros (Hessian matrix)  

> theta.start=c(6,2) 

> out=nlm(minuslogliklognorm,theta.start,hessian=TRUE) 

Warning messages: 

1: In log(theta[2]) : NaNs produced 

2: In nlm(minuslogliklognorm, theta.start, hessian = TRUE) : 

  NA/Inf replaced by maximum positive value 

> out 

$minimum 

[1] 157.7139 

$estimate 

[1] 6.137875 1.389408 

$gradient 

[1] -2.713500e-06 -2.659279e-07 

$hessian 

             [,1]           [,2] 

[1,] 10.360257841  -0.004526871 

[2,] -0.004526871   20.710188098 
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$code 

[1] 1 

$iterations 

[1] 7 

> HH=out$hessian # HH is the hessian of minus the log likelihood, i.e. HH is equal to 

minus the hessian of the likelihood 

> solve(HH)    # inverse of HH 

             [,1]           [,2] 

[1,] 9.652270e-02   2.109811e-05 

[2,] 2.109811e-05   4.828542e-02 
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Estimation of a function of the parameters 

o What can we do when our interest is about a function of the parameters?  

Example: Assume that our interest, in the last couple of examples, was about the expected value of X, 

that is )2/exp()( 2σµ +=XE . The point estimator is easy to obtain, using the invariance property of 

the mle, and we get 
^

2ˆ ˆ( ) exp( / 2)E X µ σ= + . What are the expected value and the (approximate) 

variance of this estimator?  

o Theorem 15.16 – (Delta method) Let ( )1 2, , ,
T

n n n knX X X=X �  be a multidimensional variable of 

dimension k based on a sample of size n. Assume that X  is asymptotically normal with mean θ  and 

covariance matrix / nΣ , where neither  θ  nor Σ  depend on n . Let g  be a function of k  variables that is 

totally differentiable. Let ),,,( 21 knnnn XXXgG �= . Then nG  is asymptotically normal with mean )(θg  

and variance ( ) ( ) n
T

/gΣg ∂∂ , where ∂ g  is the vector of the first derivatives, that is, 

( )T

kggg θθθ ∂∂∂∂∂∂=∂ /,,/,/ 21 �g  and it is to be evaluated at θ , the true parameters of the original 

random variable. 
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o Comments:  

o There are several presentations of the delta method 

o When 1k = , the theorem reduces to the following statement: Let θ̂  be an estimator of θ  that has 

an asymptotic normal distribution with mean θ  and variance n/2σ . Then ˆ( )g θ  has an asymptotic 

normal distribution with mean )(θg  and variance 2 2( ) ( / )g nθ σ′ × . 

o Example 15.12 – Use the delta method the approximate the variance of the mle of the probability that 

an observation from an exponential distribution exceeds 200. Apply this result to Data Set B. 

As it is well known, the mle estimator of θ  is X=θ̂  with ( )ˆE θ θ=  and ( ) 2ˆvar / nθ θ= . 

We want to estimate ( ) )(200Pr /200 θθ geX ==> −  

( )
ˆ200/ˆP̂r 200 ( )X g e

θθ −> = =  

Delta method: 

( ) θθθ /200)()ˆ( −=≈ eggE    and  ( )
2 2 2 400/

2 200/

2 2

200 200ˆ ˆvar ( ) ( ) var( )
e

g g e
n n

θ
θ θ

θ θ θ
θ θ

−
− ′≈ = = 

 
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Application to Data Set B:   20n = ;  Estimate: 4.1424ˆ =θ  

 ( ) 8690.0)ˆ(200rP̂
ˆ/200 ===> − θθ egX  ( )

2 400/1424.4

2

200ˆˆvar ( ) 0.000744402
20 1424.4

e
g θ

−

≈ =
×

 

95% Confidence Interval:  02728373.0645.18690019.0 ×∓ , that is (0.8241; 0.9139) 

o Example 15.13 – Construct a 95% confidence interval for the mean of a lognormal population using 

Data set B. Compare this to the more traditional confidence interval based on the sample mean 

Note that the sample size is too small to use asymptotic results! 

Usual method  

1.96 /x s n± × , i.e. 1424.4 1.96 3435.04 / 20± × , that is (-81.07, 2929.87). 

Note that this interval includes values that are not admissible ( 0)()( >= θgXE ). 
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

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
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From example 15.9 we know that the mle estimates are ˆ 6.1379µ =  and 3894.1ˆ =σ . Then 

( )
2 2 2ˆ ˆ ˆˆˆ ˆvar ( ) 1 exp 280444

2 2
g

n

σ σ σ
θ µ

     
≈ × + × + =     
     

 

The 95% confidence interval is then  28044496.175.1215 ×∓ , that is, (177.79; 2253.71) 
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NON NORMAL CONFIDENCE INTERVALS 

o In the previous section the confidence intervals are based on 2 assumptions: 

1. The normal  distribution is a reasonable approximation for the true distribution of the maximum 

likelihood estimators (large samples); 

2. When there is more than one parameter, the construction of separate confidence intervals is an 

acceptable procedure. 

o We will see an alternative procedure (the result is still asymptotic) which let us built confidence regions 

to answer to point 2.  

o The new procedure to define confidence intervals is based on the likelihood ratio tests (to be formally 

presented in chapter 16 of Loss Models).  

o The idea is to include in the confidence interval (region) the values of θ  with a greater likelihood, i.e. 

our likelihood interval will be defined as { }c≥)(: θθ �   with ˆ( )c θ≤ �  to guarantee that the interval is not 

empty.  

o The question is: How to define c  in such a way that the procedure produces a 100(1 )%α−  confidence 

region?   
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o The solution is then to define αθ qc ×−= 5.0)ˆ(�  (be aware of a typo in the book – /2
ˆ( ) 0.5c qαθ= − ×�  

instead of the correct solution)  where qα  is the 1 α−  quantile of a chi square distribution with degrees 

of freedom equal to the number of estimated parameters.  Keep in mind that this result is asymptotic. 

o Example 15.14 – Use this method to construct a 95% confidence interval for the parameter of an 

exponential distribution. Compare the answer to the normal approximation, using Data Set B. 

Exponential distribution: ( ) θθθθθ /ln/ln)(
1

xnnx
n

j j −−=−−=∑ =
�  and ˆ xθ = . 

Data Set B: 20=n , 1424.4x = , 

Normal approximation 

2
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n n x
θ

θ θ
′ = − +� ; 

32

2
)(

θθ
θ

xnn
−=′′� ; 

22232

22
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θθθθθ
θ

nnnXnn
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


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


−−=








−−= ;  

2
1( )I

n

θ
θ − =  

The confidence interval is nxx /96.1 ×∓ , that is, (800.129; 2048.67) 

Non – normal approximation 

nxn −−= ln)ˆ(θ� ;  0.05 3.841q =  (we are estimating 1 parameter) 
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The interval is given by  

ln / ln 0.5 3.841 ln / ln 1 1.9205 /n n x n x n x x nθ θ θ θ− − ≥ − − − × ⇔ + ≤ + +   

which has to be solved numerically ( ln 1 1.9205 / 20 8.35753x + + = ). Using EXCEL’s solver we get 

the interval (946.788; 2285.246) 

Comment: To be rigorous we need to prove that the equation ln / ln 1 1.9205 /x x nθ θ+ = − −  has 

only 2 roots and that the inequality is strict between the roots. 

Challenging question: are you able to prove that? 

 

o Example 15.15 – In example 15.4, the mle for a gamma model for Data Set B were ˆ 0.55616α =  and 

1.2561ˆ =θ . Determine a 95% confidence region for the true values. 

Gamma distribution  

o 
1 1

( , ) ( 1)ln ln ln ( ) ( 1) ln ln ln ( )
n nj

j jj j

x n x
x x n nα θ α α θ α α α θ α

θ θ= =

 
= − − − − Γ = − − − − Γ 

 
∑ ∑�  

o ˆˆ( , ) 162.2934α θ = −�  
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o 2889.1655.0)ˆ,ˆ( −=×−= αθα qc �   (using a 2
)2(χ )  

We must solve the inequality 

28488
122.7576 ( 1) 20 ln 20ln ( ) 165.2889α α θ α

θ
× − − − − Γ ≥ −  

> x=c(27,82,115,126,155,161,243,294,340,384,457,680,855,877,974,1193,1340,1884,2558,15743) 

>  

> minusloglikgamma=function(theta){ 

+   -sum(dgamma(x,shape=theta[1],scale=theta[2],log=TRUE)) 

+   } 

>  

> loglikgamma=function(a,b){ 

+   sum(dgamma(x,shape=a,scale=b,log=TRUE)) 

+   } 

>  

> theta.start=c(mean(x)*mean(x)/var(x),var(x)/mean(x)) 

> out=nlm(minusloglikgamma,theta.start,hessian=TRUE) 

> out 

$minimum 

[1] 162.2934 
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$estimate 

[1]    0.556157 2561.146543 

 

$gradient 

[1] -6.110668e-06  4.771822e-10 

$hessian 

             [,1]         [,2] 

[1,] 82.442844018 7.808613e-03 

[2,]  0.007808613 1.695060e-06 

$code 

[1] 1 

$iterations 

[1] 35 

 

> # Independent confidence intervals  

> theta_mv=out$estimate 

> invH=solve(-out$hessian) # The function is minus the loglikelihood 

> theta_mv_var=-diag(invH) 

> linf=theta_mv-1.96*sqrt(theta_mv_var); lsup=theta_mv+1.96*sqrt(theta_mv_var) 

> linf; lsup; 
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[1]   0.2686390 555.9871246 

[1]    0.843675 4566.305962 

>  

> # Confidence region 

> q=qchisq(0.05,2,lower.tail=FALSE) 

> cc=-out$minimum-0.5*q   # The function is minus the loglikelihood 

>  

> a=seq(.5*linf[1],2*lsup[1],(2*lsup[1]-.5*linf[1])/81) 

> b=seq(.5*linf[2],2*lsup[2],(2*lsup[2]-.5*linf[2])/81) 

>  

> z=array(0,dim=c(length(a),length(b))) 

> for(i in 1:length(a)) { 

+   for(j in 1:length(b)) { 

+      z[i,j]=loglikgamma(a[i],b[j]) 

+      } 

+   } 

> persp(a,b,z,theta=30,phi=30,ticktype="detailed") 

> contour(a,b,z,level=c(cc)) 
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a

0.5

1.0

1.5

b

2000

4000

6000

8000

z

-260

-240

-220

-200

-180
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BAYESIAN ESTIMATION 

o Until now discussion about estimation has assumed a frequentist approach, namely: 

o The parameter of the population distribution is unknown but fixed (not random); 

o The inference procedures are based not only on the observed sample but also on the population of 

samples that could have been observed. 

o The Bayesian approach assumes that our lack of knowledge about the parameters value should be 

translated using probability distributions (consequently unknown parameters are treated as random 

variables) and that only the observed data (and not the population of samples) is relevant to make 

statistical inference. 

 

Bayesian Inference 

|

|

1 2 |

Model  ( | ) Bayes
Model distribution  ( | )

Sample  ( , , , ) Posterior distribution  ( | )
Prior distribution  ( )

Theorem                

X

n

f x
f

x x x

θ
θ

π θ
π θ

Θ

Θ
Θ


→ 

→


X

x

x
x�  
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Model distribution 

• Theoretical model for the population: for instance Bernoulli, normal, …. 

• Instead of considering a random sample ( )1 2, , , nX X X=X �   – usually the sampling process 

generates i.i.d. observations  – we look at the observed sample ( )1 2, , , nx x x=x �  

• Definition 15.9 – The model distribution is the probability distribution for the data as collected given 

a particular value for the parameter. Its pdf is denoted by | ( | )f θΘX x , where vector notation for x  is 

used to remind us that all the data appear here. Also note that this is identical to the likelihood 

function, and so that name may also be used at times. 

• Comments:  

o If the observations are i.i.d., then | | 11
( | ) ( | ) ( | )

n

i
L f f xθ θ θΘ Θ=

= = ∏X Xx x . 

o Only the likelihood of the observed sample is relevant 
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Prior distribution 

o Definition 15.7 – The prior distribution is a probability distribution over the space of possible parameter 

values. It is denoted by ( )π θ  and represents our opinion concerning the relative chances that various 

values of θ  are the true value of the parameter. 

o Comments: 

o The existence of a prior for θ  (scalar or vector) is the core of Bayesian inference. From a theoretical 

point of view it raises important questions about the concept of probability.  

o From a practical point of view, the determination of the prior is a major problem of Bayesian 

methods. In many situations we have some insights about possible parameter values but the main 

difficulty is translating this knowledge into a probability distribution.  

o Due to the difficulty of finding a prior, we often use an improper prior distribution (vague prior) or 

we take advantage of conjugate priors. 

o Definition 15.8 – An improper prior distribution is one for which the probabilities (or probability 

density function) are nonnegative but their sum (integral) is infinite. 
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o Comments: 

o The improper prior is one possible solution when we have minimal knowledge about the parameter 

behavior.  

o Universal agreement on the best way to construct a vague (or non-informative) prior does not exist. 

o However the use of the improper prior ( ) 1/π θ θ= , 0>θ  as a vague prior for a scale parameter is 

quite consensual.  

o Definition 15.23 – A prior distribution is said to be a conjugate prior distribution for a given model if the 

resulting posterior distribution is from the same family as the prior (but perhaps with different 

parameters). 
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Bayes Theorem: How to obtain the posterior distribution? 

o Definition 15.12 – The posterior distribution is the conditional probability distribution of the 

parameters, given the observed data. It is denoted )|(| xX θπ Θ . 

o Theorem 15.14 – (Part a) The posterior distribution can be computed as 

|

|

|

( | ) ( )
( | )

( | ) ( )

f

f d

θ π θ
π θ

θ π θ θ

Θ
Θ

Θ

×
=

×∫
X

X

X

x
x

x
 

o Comment:  

o This is the central purpose of Bayesian analysis: The posterior distribution tells us how our opinion 

has changed once we observed the data (compared with the prior).  

o In most situations we determine the posterior up to a normalizing constant. This constant can be 

determined using the condition | ( | ) 1dπ θ θΘ =∫ X x  but it is obtained more easily when the posterior 

belongs to a known family of distributions. In such cases we identify the core of the family and then 

we get the constant (using for instance Appendix A or B of the book). 

o Remember Bayes’s formula: Partition { }1 2, ,A A � , event B , then 
( | ) ( )

( | )
( | ) ( )

i i
i

i ii

P B A P A
P A B

P B A P A

×
=

×∑
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The predictive distribution 

o Definition 15.13 – The predictive distribution is the conditional distribution of a new observation y  

given the data x . It is denoted | ( | )Yf yX x  

o Theorem 15.14 – (Part b) The predictive distribution can be computed as 

∫ ΘΘ= θθπθ dyfyf YY )|()|()|( ||| xx XX  

Where | ( | )Yf y θΘ is the pdf of the new observation, given the parameter value. 
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Example 15.17 – The following amounts were paid on a hospital liability policy  

125  132  141  107  133  319  126  104  145  223. 

The amount of a single payment has the single-parameter Pareto distribution with 100θ =  and α  

unknown. The prior is a gamma distribution with parameters  2=α  and 1=θ . Determine all of the 

relevant Bayesian quantities. 

Prior:  ( ) e απ α α −= , 0>α    This means that ~ (2,1)α γ , ( ) var( ) 2E α α= =  

Likelihood:  

11 1

10 1010 10 10

101 1

1

100
( | ) ( | ) 100

100 1 1
0.022346 0.022346

n n

i ii i
i

i i
i i ii

L f x x
x

x x x

α

α

α
α α

α

α
α α

α α α

+= =

= =

=

= = >

= = × × ∝ ×

∏ ∏

∏ ∏
∏

x
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Posterior:  

( ) ( )

10

|

1 ln 0.02234611 11

11 4.80112

( | ) ( | ) ( ) 0.022346

exp ln 0.022346

0

L e

e e

e

α α

αα

α

π α α π α α α

α α α

α α

−
Α

− −−

−

∝ × ∝ × × ×

= × × =

= >

X x x

 

We get the core of a gamma distribution with parameters 12 and 1/4.80112 and then we know the 

normalizing constant which is 
124.80112 / (12) 3.757995Γ = . As the posterior belongs to the same 

family of the prior we said that we are using a conjugate prior for this model. 

The point here is that the observed samples leads us to change our believes about α  from a (2,1)γ  

to a (12,0.20828)γ  and now ( | ) 2.49942E α =x  and var( | ) 0.52059α =x .  

We can draw both densities on the same graph to visualize the differences: 

> x=seq(0,6,by=0.2) 

> plot(x,dgamma(x,shape=1,scale=1),type="l",ylab="density",xlab="alpha") 

> y=dgamma(x,shape=12,scale=0.208285) # posterior 

> lines(x,y,type="l",lty=2) 

> text(3.5,0.45,"posterior"); text(0.8,0.7,"prior")
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Predictive: 

11 /0.20828

| | | 10 0

12 /0.20828 ln100 ln 12 (1/0.20828 ln100 ln )

0 0

12 (0.195951 ln )

0

100
( | ) ( | ) ( | ) 3.757995

3.757995 3.757995

3.757995
100

Y Y

y y

y

f y f y d e d
y

e d e d
y y

e d y
y

α
α

α

α α α α

α

α
α π α α α α

α α α α

α α

∞ ∞ −
Α Α +

∞ ∞− + − − − +

∞ − +

= =

= =

= >

∫ ∫

∫ ∫

∫

X Xx x

 

The integrand is the core of a gamma density function with parameters 13 and 1/ (0.195951 ln )y+ . 

Then we can use the usual normalizing constant to calculate the integral. We get 

| 13 13

(13) 3.757995 3.757995 12!
( | )

(0.195951 ln ) (0.195951 ln )
Yf y

y y y y

Γ × ×
= =

+ × + ×
X x

 
, 100y >  

The density does not look familiar but it can be proved that ln ln100Y − has a Pareto distribution. 

> y=seq(100,400,by=20) 

> yy1=2*(y^(-1))*((1+log(y/100))^(-3)); 

> plot(y,yy1,type="l",ylab="predictive density",xlab="y") 

> yy2=3.757995*factorial(12)*(y^(-1))*((0.195951+log(y))^(-13)); 

> lines(y,yy2,type="l",lty=2) 

> text(130,0.005,"before"); text(150,0.010,"after") 
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From a Bayesian point of view the analysis is complete when we specified the posterior distribution which 

quantifies our knowledge about θ  after the observation of the sample. However, for practical purposes 

point estimation and/or “confidence interval” are, most of the time, needed. The problem is how to sum 

up a distribution in one point or using an interval. For point estimation the usual Bayesian solution is to use 

a loss function. 

Bayesian point estimation 

o Definition 15.15 – A loss function ),ˆ( jjjl θθ describes the penalty paid by the investigator when ˆ
jθ  is 

the estimate and jθ  is the true value of the jth parameter. 

o Comment: The loss function is random since it depends on jθ . 

o Definition 15.16 – The Bayes estimate for a given loss function is the one that minimizes the expected 

loss, given the posterior distribution of the parameter in question. 

o Definition 15.17 – For squared-error loss, the loss function is (all subscripts are dropped for 

convenience) 2)ˆ(),ˆ( θθθθ −=l . For absolute loss it is ˆ ˆ( , )l θ θ θ θ= − . For zero-one loss it is 0),ˆ( =θθl  if 

θθ =ˆ  and 1 otherwise.  

o Comment: Strictly speaking, Definition 15.17 defines the loss functions up to a multiplicative constant. 
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o Theorem 15.18 – For squared-loss, the Bayes estimate is the mean of the posterior distribution; for 

absolute loss it is the median and for zero-one loss it is the mode. 

Challenging question: Prove the theorem for the squared loss function (easier) and other functions. 

o Comments:  

o There is no guarantee that the posterior’s mean exists (or the mode) or that the median is unique. 

o When no otherwise specified, the term Bayes estimate refers to the posterior mean (squared-loss 

function). 

o Example 15.18 – Determine the three estimates of α  (example 15.17 continued) 

The posterior is a gamma distribution with parameters 12 and 0.20828. Then ( | ) 2.49942E α =x , the 

mode is  11 0.20828 2.291132× =  and the median has to be determined numerically (2.430342). 

o Sometimes the expected value of the predictive distribution is of interest. We can calculate it using the 

predictive and it can be shown that | |( | ) ( | ) ( | ) ( | )YE Y y f y dy E Y dπ θ θ θΘ= =∫ ∫X Xx x x  (see Loss 

Models). 
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Bayesian HPD credibility set 

o Definition 15.19 – The points a b<  define a )%1(100 α−×  credibility interval for jθ , provided that 

( ) αθ −≥≤≤ 1Pr ba j .  

o Comments: 

o The term credibility is used to underline the differences between the frequentist (confidence 

interval) and the Bayesian approaches. This term has no relation with credibility theory.  

o The inequality is due to discrete distribution 

o Definition 15.19 does not produce a unique solution for the credibility interval. Usually we look for 

the shortest interval. 

o Theorem 15.20 – If the posterior random variable x|jθ  is continuous and unimodal, then the 

100 (1 )α× −  credibility interval with the smallest width, ab − , is the unique solution to 

αθθπ −=∫ Θ 1)|(|

b

a
j d

j
xX  and  | |( | ) ( | )

j j
b aπ πΘ Θ=X Xx x   

This interval is a special case of a highest posterior density (HPD). 

o Comment: The posterior cannot have any local maximum except the mode which is unique. 
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o Example 15.20 – Determine the shortest 95% credibility interval for the parameter α  (example 15.17 

continued) 

Let us use EXCEL’s solver to determine the interval 

 

In cells C4 and D4 we put two initial values for the limits of the interval 

In cells C5 and D5 we calculate the value of the distribution function at points a and b respectively. Cell 

B5 contains the probability of the interval. 

In cells C6 and D6 we calculate the value of the posterior density function at points a and b respectively. 

Cell B6 contains the difference between the density at point b and the density at point a. 

Now we want to get the value 1 0.95α− =  in cell (5,B) and the value 0 in cell (6,B). 
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The credibility interval is then (1.1832009; 3.93840632) 

To get an approximate solution we place a probability of 0.025 at each end → (1.29148; 4.09947). 

o Definition 15.21 – For any posterior distribution the 100 (1 )α× − % HPD credibility set is the set of 

parameter values C such that αθ −≥∈ 1)Pr( Cj  and { }cC jj j
≥= Θ )|(: | xX θπθ  for some c, where c is 

the largest value for which the previous inequality holds. 

o Sometimes computing posterior probabilities is difficult but computing posterior moments is easier. We 

can them using the Bayesian central limit theorem. 
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o Theorem 15.22 – Bayesian central limit theorem – If ( )π θ  and )|(| θxf ΘX  are both twice differentiable 

in the elements of θ  and other commonly satisfied assumptions hold, then the posterior distribution of 

Θ  given =X x  is asymptotically normal. 

o Comment: The “commonly satisfied assumptions” are like those presented with Theorem 15.5 

o Example 15.21 – Construct a 95% credibility interval for α  using the Bayesian central limit theorem 

(example 15.17 continued). 

The posterior is (12,0.20828)γ  and then ( | ) 2.49942E α =x  and var( | ) 0.52059α =x . The credibility 

interval is then 2.49942 1.96 0.52059± × ,i.e. (1.085238, 3.913594). Note that the method is not 

appropriate for this example as the sample size is far from large. 
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o Computational issues: Bayesian analysis proceeds by taking integrals (or sums) and most of the time 

numerical integration is needed. 


