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PARAMETER ESTIMATION
METHOD OF MOMENTS AND PERCENTILE MATCHING

e Random sample (X,,X,,---, X, ) where all n observations came from the same parametric distribution,

F(x18). 8 is a vector (length p) of unknown parameters.

e let 1 (0)= E(Xk | 0). Using a random sample of independent observations, the empirical estimate of

nok
the kth moment is /i, =j—:1], i.e. the kth moment of the sample (kth empirical moment).
n

* Let 7,(6) be the 100g% percentile of the random variable X, that is, F(?Z'g (6)] 6?) =g.If Fis
continuous this equation will have, at least, one solution. The empirical estimate of this percentile is fzg,

the corresponding percentile of the random variable.
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Definition 15.1 — A method of moment estimate of € is any solution of the p equations y, (0) = I,
k=12,---,p.

e Comments:

o Although definition 15.1 can be generalized to consider any set of moments, results are usually
better when using the smallest positive integer moments.

o Sometime we must use higher moments to solve the system (for instance X ~ U (—6,60) cannot be
solved using the first moment)

o Itis necessary to check that the relevant moments exist.

o There is no guarantee that the equations will have a solution or, if there is a solution, that it will be
unique

Example 15.1 — Use the method of moments to estimate parameters for the exponential, gamma and
Pareto distributions for Data Set B from chapter 13.

The exponential distribution has one parameter but the Pareto and the Gamma have 2 parameters
each, so we will need 2 empirical moments.
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Exponential distribution: E(X) =6, then 8 =1424.4

Gamma Distribution: E(X)=a6, a>1; E(X*)=a(a+1)6°, @ > 2, then we must solve the system

ag=14244 a=0.181
. e solution Is - .
o(a+1)6* =13238441.9 0= 142~4'4 =7869.61
o
. 4 2 26° .
Pareto distribution: E(X)=—; E(X") = . The system is
a-1 (a-1)(a-2)
O 14244
(a—1) 0 = 2.442
< 26? and then 0 =2053.985
=13238441.9 B ‘
k(05—1)(&—2)
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3000 4000

1000 2000 5000 6000
Expon, es——=Gamma s——Pareto
Exponential Gamma Pareto
pAr( X >1000) = 0.4956 0.2686 0.3796
Pr(X > 5000) = 0.0299 0.0850 0.0491
Pr(X >50000)= | 5-69%107" 6.73%107° 3.73x107
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Definition 15.2 — A percentile matching estimate of @ is any solution of the p equations T, @) =7,

k’

k=12,---,p, where 81,82, 8, arep arbitrarily chosen percentiles. From the definition of percentile, the

equations can be written as F(frgk Ié?) =g,, k=L2,---,p.

e Comments:
oThere is no guarantee that the equations will have a solution or, if there is a solution, that the solution
is unique;
o For discrete random variables percentiles are not always well defined;
o When using empirical percentiles, i.e. percentiles calculated from the empirical distribution, the
situation could be controversial. Most of the time we need an interpolation scheme but, except for
the median, there is no “consensual” solution (Hyndman and Fan (1996) present nine different

methods and the function gquantile of the R program allows us to get the percentiles using any of
these methods). In this course we will use Definition 15.3 (type=6 for the quantile function)
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Definition 15.3 — The smoothed empirical estimate of a percentile is found by
£, =(0—=h)x, +hx ,, where j=|(n+1)g |, h=(n+1)g—j,| |indicatesthe greatest integer function

and x, < x5 < X3 <00 S x,, are the order statistics from the sample.

e Comments:

o Unless the sample has two or more data points with the same values, no two percentiles will have
the same value.
o We can only estimate percentile for 1/ (n+1)< g<n/(n+1).

o The choice of which percentiles to use leads to different estimates. This is a strong point against the
percentile matching method except when there is a reason to choose a particular set of percentiles.
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Example 15.2 — Use percentile matching to estimate parameters for the exponential and Pareto
distribution for Data set B.
Without more information the choice of the percentiles is quite arbitrary. We will follow Loss Models.

Exponential: use the median (the parameter is the mean, i.e. a localization parameter). More

adequately the idea should lead us to use percentile 1—e™ =0.6321 since Pr(X <8) =1-¢".
Sample median: Z,5 =0.5x384 +0.5x457 =420.5

We must solve the equation

0.5=F(#,;160) < 0.5=1—exp(—420.5/6) < In2=420.5/0 < 0 =606.65

Pareto: use the 30" and the 80™ percentiles.

30" j=[21x0.3|=6; h=21x03-6=0.3; £,,=0.7x161+0.3x243=185.6
80™: j=|21x0.8|=16; h=21x0.8-16=0.8; £,; =0.2x1193+0.8x1340=1310.6
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The equations are

In(0.7) =&1In LA
185.6+6

A a
{0.3:F(185.6I6?,a) 185.6+6
=

R
0.8=F(1310.616,) P a 0
_ In(0.2)=&In| ———
1310.6+ 8 i 1310.6+6
e In(0.7) ( e In(0.7)
In(6) —In(185.6 + ) In(9) —In(185.6 + H)
That is < J

A A & A A
In(0.2) _In(9)-In(1310.6+6)  |In(0.2) In(6)—In(1310.6+6) _
(In(0.7)  In(@)-In(185.6+6)  |In(0.7) In(d)—In(185.6+6)

This system can be solved numerically.

Using Excel’s solver we obtain 0 =715.0315 for the second equation and, reporting this value in the
first equation we get & =1.545589 (see next slide)

Of course the choice of different percentiles leads to different estimates.

Exercise: Use percentiles 0.1 and 0.9, obtain 6 and &, and comment.
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Using EXCEL’s solver

A S Solver Parameters - g [ A B
1 1
Set Objective: SB54
I heta 10 > Theta  715.0332
3 i () Max ) Min @ value Of: . ’
a Equation -2.02E-06
4 EqU aﬁon 2.870072 By Changing Variable Cells: .
$B%2
< 6 Alpha 1.545592
6 Alpha 0.119952 Subject to the Constraints: =
= # l Add ]
l Change ]
l Delete l
l Reset Al ]
- l Load/Save ]
Make Unconstrained Variables Mon-Megative
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MAXIMUM LIKELIHOOD ESTIMATION

e Why ML estimation?

o More efficient estimators

o To cover some annoying cases: An important limitation of moment and percentile matching
estimators is that the observations are from the same random variable. If, for instance, half the
observations have a deductible of 50 and the other half a deductible of 100 it is not clear to what
the sample mean should be equated.

o More calculus involved

o Sometimes ML estimators are quite sensitive to “extreme” observations

® To use Maximum Likelihood Estimators
o We must have a data set with n events, A ,A,,---, A, , where Aj is whatever was observed for the
jth observation (usually A; isavalue or an interval)
o Thevariables X, X,,---,X behind the events A,A,,---,A, do not need to have the same

probability distribution but they must be independent and their distribution must depend on the
same parameter vector 4.

10
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¢ Definition 15.4 — The likelihood function is L(8) = H’;ZlPr(Xj €A | @) and the maximum likelihood
estimate of @ is the vector that maximizes the likelihood function.

® Comments:

o Notation — Usually the likelihood function is written as L(81x,,x,,---,x,). Because observed data
can take many forms, we will write L(€) without clarifying the conditioning values.

o Independence among events — As the events A, A,,---,A are assumed independent, the
likelihood is the probability, given a particular value of &, of observing what was observed, since
L(6) :H’;zlpr(xj € A;10)=Pr(X, € A,X,€ A, X,€A,10).

o Theoretical — When the probabilistic model is continuous and the observed event is a point,

A; = x;, we know that Pr(Xj €A, | @) =0 and we will use the density function. The rationale for
such a procedure corresponds to interpret the observed value as being in a neighborhood of X; and
to approximate the probability Pr(x; —€ < X ; <x; +£160) by means of 2¢ f(x,16), where

Jx; | 0) is the density function at x ;. Dropping out the multiplicative constants leads to use the

density f(x; | @) as the contribution to the likelihood function.

11
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Multiplicative constants that are independent of the elements of the vector 8 can be removed

from the likelihood function since they will not affect the maximum likelihood estimate. Removing
such constants does not change the solution but it will change the value of the likelihood.

There is no guarantee that the likelihood function has a maximum at eligible parameter values.
When maximizing the likelihood function the existence of local maxima can hide the global
maximum.

Log-likelihood — In many situations it is easier to use the log-likelihood, that is, to maximize
(@)=InL@) =2 In(Pr(X € A;16)) instead of L(6) (as the natural logarithm is a strictly
increasing function the solution is unchanged).

ln(Pr(XJ. €A, 9)) is called the individual contribution of observation j to the log likelihood.

In many situations numerical methods are needed.

12
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COMPLETE INDIVIDUAL DATA
When there is no truncation and no censoring and the value of each observation is recorded, it is easy to

write the log-likelihood function, /() = Zj_:lln ij (x; | 0).

e Example 15.4 — Using Data set B, determine the maximum likelihood estimate for an exponential
distribution, for a gamma distribution where « is known to equal 2, and for a gamma distribution
where both parameters are unknown.

Exponential distribution

fxl@=0"¢"?, x>0,0>0.

(=" m(g'e)=3" (-ino-x,06")
r@=3" (-0"+x67%)=-n8"+nx6”
(0)=00=—n0"'+nx6” < 0=x

r@=3" (67-2x,67)=n67(1-2x6")

As f"(@)}ﬁ =-n67 <0 we get 9=x=14244 (same estimate as with the method of moments)

13
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Gamma distribution with o =2 - similar to the previous case

Gamma distribution with unknown parameters — numerical maximization

a-1 —x/6
f(xla,e):L, x>0, a,60>0.

6 L(c)
We,0)=3" In(f(x1a,6)=>"_ ((@=Dlnx,~anf—x,6" ~In[(@))

To maximize in order to a requires the derivative of InI'(&) which is not an explicit function (we can

obtain a solution in orderto @, 8 = x / ¢, but the problem remains). Consequently we need to use
numerical techniques.

We illustrate the procedure using Microsoft EXCEL solver and R.

14
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EXCEL

E6 - ( fe |

A B C D E F G H I
1 alfa 2
2 theta 500

3
4 loglik= -182.8027631 sum of column 1ln f(x J)

5
B |

7 X 7 In £(x J)

8 27 -9.187379331 <& LN (GAMMADIST (A8;$BS$1;5SB52; FALSE) )
9 82 -8.18649695

10 115 -7.914284068

11 126 -7.844934%29

12 155 -7.65%579108

15
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FSDl'u'ErP'EﬁITIEtEFS M i A B C
1 alfa 0.55615779%¢
Set Objective: Bea 2 theta 2561.142391
3
To: @ Max ©) Min © Value OF: 4 loglik= -162.2934031 sum
By Changing Variable Cells: 5
SR51:3BS2 ]
Subject to the Constraints: 7 X_J In £ (X_:l }
= 8 27 -6.307636437
9 82 —-6.8221c7714
e 10 115 -6.98516574
Delete 11 126 —-7.030005585
Reset All
Load/Save

ma_d__ s __& - _Sw__—_ LA __mx

e e

Then & =0.55616 and 8 =2561.14. If necessary, we can use a different starting point and/or we can

add constraints.

16
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Using R — Two among many solutions.
> x=c(27,82,115,126,155,161,243,294,340,384,457,680,855,877,974,

+ 1193,1340,1884,2558,15743)
> mean (x)
[1] 1424.4

>
> # 1ST SOLUTION: USE FUNCTION nlm
> # As nlm minimizes a function we introduce minus the log-1lik
> minusloglikgamma=function (param, x) {
+ alpha=param[1l]; theta=paraml[2]
+ —sum (dgamma (x, shape=alpha, scale=theta, 1log=TRUE) )
+ }
> param.start=c(1l,1000) # starting values - important point
> outl=nlm(minusloglikgamma, param.start,x=x) # Options available
Warning messages:
l1: In dgamma (x, shape, scale, log) : NalNs produced
2: In nlm(minusloglikgamma, param.start, x = Xx)
NA/Inf replaced by maximum positive value
>

17
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outl

Sminimum

[1] 162.2934 # Minus the log-likelihood
Sestimate

[1] 0.556156 2561.146495

Sgradient

[1] -8.273560e-05 -6.824815e-09 # Check the convergence
Scode

(11 1 # Check the convergence
Siterations

[1] 26

>
> # 2ND SOLUTION: USE FUNCTION maxLik, LIBRARY maxLik
> # As maxLik maximizes a function we introduce the log-lik
> loglikgamma=function (param, x) {
+ alpha=param[1l]; theta=paraml[2]
+ sum (dgamma (x, shape=alpha, scale=theta, log=TRUE) )
+ }

> # param.start has already been defined

> library (maxLik)

> outZ2=maxLik (loglikgamma, start=param.start, x=x)

There were 50 or more warnings (use warnings() to see the first 50)

18
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> out?2

Maximum Likelihood estimation

Newton-Raphson maximisation, 22 iterations
Return code 1: gradient close to zero
Log-Likelihood: -162.2934 (2 free parameter(s))
Estimate(s): 0.5562315 2560.365

Comments:
e Both functions are based on the Newton-Raphson method;
e We can use the gradient and the Hessian matrix to improve results;
e We can control the process changing some parameters values (tolerance, maximum number of
iterations, ...);
e Other procedures are available to maximize the log-likelihood.

19
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COMPLETE GROUPED DATA

e We must rectify the likelihood in order to consider the mass probability associated with each group.

® As before, let us assume that there are k groups and that group j, with n; observations, is limited by

k

_(F(c;18)~F(c,,16))" and the log likelihood

values ¢, ;and c;. The likelihood function is L(6) = i

is (0)=_n,In(F(c;10)=F(c,,16))

e Example 15.5 - From Data Set C, determine the maximum likelihood estimate of an exponential
distribution.

F(x18) :1—6_"/9; F(cj | @) — F(Cj_1 16) = o0 _ eilf
The log-likelihood is then

0(0) = 99><1n(1—e_7500/‘9) n 42><1n(e_7500/9 _6—17500/9)+ et 3Xln(e—300000/9 —0)

Using Microsoft Excel or another numerical procedure to maximize the log-likelihood we get
6 =29720.77 and /() =—406.03.

Exercise: check the results using EXCEL or R

20
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TRUNCATED AND CENSORED DATA

e Censored data: Non censored observations are individual points and censored observations are grouped
data.

e Truncated data: More challenging. We must keep in mind that some values of the r.v. cannot be
observed.

e Klugman, Panjer and Willmot (Loss Models) pointed out that there are two ways to proceed but it is
important to underline that these ways correspond to two different models. Note that in both
situations we only observe the values above the truncation points.

First model — We want to estimate the distribution of the truncated values;

Second model — We want to estimate the model behind the values without truncation (more interesting
case);

e Example 15.6 - Assume the values in Data Set B had been truncated from below at 200. Using both
methods estimate the value of & for a Pareto distribution with @ =800 known. Then use the model to
estimate the cost per payment with deductibles of 0, 200 and 400.

As data has been truncated at 200 we only consider observations above 200 (14 observations)

21
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First model — Shift the data by subtracting 200. In this model we will consider that the shifted data follow a
Pareto distribution with unknown & and @ =800. The density and the log-likelihood are

o
Fxla.0=2800)=— %% x>0, >0  f(@)=Y"_(Ine+aln800—(a+1)InB00+x,))
800+ x)*" 7= !
f(@)="+nxIn800->""_In(800+ x,) Va)=0 a= "
o Jj=1 J

—nxIn800+ )" In(800+x))

We get & =1.348191. Then, using this setup our estimate is that, when a deductible of 200 is in
force, the cost per payment follows a Pareto distribution with & =1.348191 and & =800. The
expected value of a payment is 2297.59 = 800/(1.348191-1).

Because data have been shifted it is not possible to estimate the cost with no deductible.

For a deductible of 400, we have to impose a new deductible of 200 in our shifted data. The expected
cost per payment is given by (theorem 8.3):
E(X)—E(X ~200)

E(X —2001 X >200) =
1- F(200)

22
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Using Loss Models’ appendix we get

a-1
E(X):iandE(X’\ZOO):L[l—( 9 J J

a—1 oa—1 200+ 6
Then
800 X( 800 j0.348191
_ N
E(X —2001X >200) = E(X)—-E(X ~200) _ 0.348191 200+12§408(1)91 ~2871.90
1—-F(200) ( 800 j ‘
200+ 800

23
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Second model — The purpose is to fit a model for the original population, knowing that data were
truncated at 200. The density of the observed values is now (x > 200, & >0)

2 800”
= 800+ x)*"! @
e(xla.0=800) =1 1 %0=800) (800+x)"" 21000 ]
1- F(2001 a, 6 = 800) 300” (800+ x)°
(800+200)"

Note that the values x; are the original ones (except those below 200 that are not observed).
Hey=2 _(Ina+ain1000—(a+1)n@00+x)))

, n 1 n n
()= ZH(E+1n1000—1n(800+xj)j =E+n><1n1000—zj:11n(800+xj)

n
—nxIn1000+ " In(800 +x))

F(@)=0 = =—nxIn1000+Y " In800+x,) & a=
o j=1 J

We get & =1.538166, i.e. the cost per payment without deductible follows a Pareto distribution
with & =1.538166 and 8 =800.

24
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The introduction of a deductible of 200 originates an expected cost per payment given by

0.538166
800 X( 800 )
E(X)—-E(X "200) 0.538166 \ 200+ 800 ~1858.16
1— F(200) B ( 300 jl.538166 = .
200+800

As it is natural (we are using a different set of hypothesis), this value is different from that obtained
with the first model. Note also that we can estimate that only 0.7095=1- F (2001 &, ) of the claims
are reported.

The introduction of a deductible of 400 originates an expected cost per payment given by

800 800 0.538166
X
E(X)—E(X "400) _ 0.538166 (400+ 800)
- F(400) FPVSINES ~2229.80
(400+800j

25



Instituto Superior de Economia e Gestao
UNIVERSIDADE TECNICA DE LISEOA

Example 15.7 — Determine Pareto and gamma models for the time to death for Data Set D2.
In Data Set D2 we faced 4 different situations:

Contribution to | Meaning of x

Situation the likelihood
1 | Subjects are observed from time d=0 and died | f(x16) Time of death
at time x (observed during the period of the
study). No truncation nor censoring.
2 |Subjects are observed at time d=0 and didn’t | 1= F(x16) Time of censoring
die during the period of the study. No
truncation but censoring.
3 | Subjects are observed from time d>0 f(x18) Time of death

(truncation) and died at time x (no censoring) | 1-F(d 16)

4 | Subjects are observed at time t>0 (truncation) | 1-F(x18) Time of censoring
and didn’t die during the period of the study 1-F(d16)
(censoring)

26
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It is straightforward to write the contributions to the likelihood (or to the log-likelihood). For instance:

Obs 1 - d =0 (no truncation); x=0.1 (censoring): 1—F(0.1)
Obs 4 — d =0 (no truncation); x=0.8 (no censoring): f(0.8)
Obs 31— d =0.3 (truncation); x=5 (censoring): (1-F(5.0))/(1-F(0.3))
Obs 33 — d =1.0 (truncation); x=4.1 (no censoring): f(4.1)/(1- F(1.0))

Sometimes it is useful to get a single expression for all the situations. Using d=0 for the no truncation
situation and noting that F(018) =0 we can rewrite the contribution to the likelihood from cases 1 and 2
S f(x16) nd 1-F(x18)
1-F(d|86) 1-F(d|86)
assuming value 1 when the x value corresponds to a death (0 otherwise) and we write the likelihood as

o =y )X (A= F(x;10)+v,x f(x,16)
o) =11, I-F(d,16)

respectively (with d=0 for both cases). Then we define a dummy variable, v,

and the log likelihood as £(0)=""_ (In((1-v)x(1=F(x;10)+v;x f(x;10))~In(1-F(d,10))).

Now you can compute a solution using EXCEL or R. Exercise: Do it using EXCEL
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gamma model (using R).

> d=c(rep(0,30),0.3,0.7,1.0,1.8,2.1,2.9,2.9,3.2,3.4,3.9)

> x=c(0.1,0.5,0.8,0.8,1.8,1.8,2.1,2.5,2.8,2.9,2.9,3.9,4.0,4.0,4.1,4.8,4.8,4.8,
+ rep(5.0,12),5.0,5.0,4.1,3.1,3.9,5.0,4.8,4.0,5.0,5.0)

> v=c(rep(0,3),1,rep(0,5),1,1,0,1,0,0,1,rep(0,16),1,1,rep(0,3),1,0,0)

>

> minusloglikgammal=function(theta){

+ -sum(log((1-v)*(1-pgamma(x,shape=theta[1],scale=theta[2],log=FALSE))+
+ v*dgamma(x,shape=theta[1],scale=theta[2],log=FALSE))-

+ log(1-pgamma(d,shape=theta[1],scale=theta[2],log=FALSE)))

+ }

>

> theta.start=c(3,2)

> out=nIm(minusloglikgamma1l,theta.start)

> out

Sminimum

[1] 28.52685

Sestimate

[1] 2.616737 3.311384

Sgradient
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[1] 1.026956e-05 3.390297e-06
Scode

[1]1

Siterations

[1] 14

The solution is then @ =2.616737 and 6 =3.311384.

Pareto model
> minusloglikParetol=function(theta){
+ -sum(log((1-d)*(x+theta[2])*(-theta[1])+d*(x+theta[2])*(-theta[1]-1))-
+ theta[1]*log(1+theta[2]))
+ }
> theta.start=c(3,2)
> outPareto=nIm(minusloglikParetol,theta.start)
Error in nim(loglikParetol, theta.start) :
non-finite value supplied by 'nim’
In addition: There were 50 or more warnings (use warnings() to see the first 50)
>
We are unable to find a solution in this set up.
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VARIANCE AND INTERVAL ESTIMATION

® |tis not easy to determine the variance of the maximum likelihood estimators. In most situations we
need to approximate the variance which can be done when “mid regularity conditions” are verified.

There are many ways to write those conditions.

e Theorem 15.5 — Assume that the pdf (pf in the discrete case) f(x18) satisfies the following for & in an

interval containing the true value (replace integrals by sums for discrete variables):

i. Inf(x180) isthree times differentiable with respect to 6.
ii. J- 88_49 f(x18)dx =0 - This formula implies that the derivative may be taken outside the integral

and so we are just differentiating the constant 1 (the main idea is that we can swap the
derivation with the integration - the limits of the integral cannot be functions of 8).

2
iii. J‘% f(x18)dx =0 - This formula is the same concept for the second derivative
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—o00 < I f(x160) Inf(x18)dx <0 - This inequality establishes that the indicated integral exists

2

82
06

and that the expected value of the second derivative of the log likelihood is negative.

There exists a function f(x18) such that

[ H(x) f(x16)dx < oo with < H(x).

83
Iﬁlnf(xlﬁ)dx

This inequality guaranties that the population is not overpopulated with regards to extreme
values.

Then the following results hold:

As n — oo, the probability that the likelihood equation (L’(€) = 0) has a solution goes to 1.
As n — oo, the distribution of the mle 9n converges to a normal distribution with mean 6 and
variance such that 7(0) Var(én) — 1 where

2

d d ?
1(0) ——nE(ag2 In f(X | 0)j—nE[£1nf(X IH)]
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o Comments to Theorem 15.5

o The quantity 7(8) is called Fisher’s information (of the entire sample = n3(8)in “Review of ...”)

, 0-6 -
o The second statement can be writtenas ————~n(0;])

o The theorem assumes an i.i.d. sample. A more general version of the result can be established and
uses the log-likelihood function, that is,

J? P ?
I(tﬁ?)z—E(aH2 (61 Xl,Xz,---,Xn)J:E[ﬁé(HI Xl,Xz,---,Xn)]

o If there is more than one parameter, the result can be generalized and the maximum likelihood
estimators will follow an asymptotic multidimensional normal distribution. 1(8) is now a matrix
with (r,s) element given by
82

00 .06,

16),, =_E[ el Xl,Xz,...,Xn)j
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o The inverse of Fisher’s information matrix is the Cramér-Rao lower bound for the variance of
unbiased estimators of @, that is to say, no unbiased estimator is asymptotically more accurate
than the maximum likelihood estimator.

o When Fisher’s information matrix depends on 6 we estimate it usingl(é). When I(é) is difficult to
obtain we can approximate it using the observed information I(é) = —H(é), i.e. using the Hessian
matrix of the log likelihood at 8 = 2

o Example 15.9 — Estimate the covariance matrix of the mle for the lognormal distribution. Then apply
this result for Data set B.

Note: When using the lognormal it is usually more adequate to take logarithms of the observed values
and to use the normal (gaussian) distribution.
2
. o, - 2

Lu,o)=| | ——————exp| —
: ngou/Zfr P 20°

2
(u,0) =Z’;=1 —Inx, —lna—ln(\/ﬂ)_(lnxj —Zﬂ)

20
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oo

Taking expected values

20\ n 20 ) o ElnX)-u
E[a;ﬂj“? E(ayaaj__zzFI o’
(lnX lu) _n n 0'2_

2
gl 9!
[80‘

|- 53,

nx, —u . (Inx., —u
OJ_3 j:_zzj—l( O]'3 j

azf n 1 (1nx'_1u)2 n n (IHX~—IU)2
2 :Zjl{oi+(_3) ;.4 J: o2 _321-1{ -
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Fisher’s information matrix and lower bound
/ 0 / 0
o’ 2/ and I(u,o0) /

As the information matrix depends on the parameter o we must estimate the matrix. First we estimate
L and o (for this purpose only the estimation of o is necessary)

r ( 2 (Inx, —u (

§—£=0 Zj:l(#}zo = Z'ZI
<a,LZ_ ad n 1 (lnxj—ﬂ)z = lnx - )2
ﬁ_o Zj:l _E+ o3 =0 \/

And we will use the asymptotic covariance matrix
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Now using Data Set B we get (Note that the number of observations is too low to use an asymptotic
approximation)

> # Example 15.9 - solution following the book
> x=c(27,82,115,126,155,161,243,294,340,384,457,680,855,877,974,1193,1340,1884,2558,15743)
> n=length(x); mu=sum(log(x))/n; sig2=sum((log(x)-mu)”2)/n; sig=sqrt(sig2)
> mu; sig2; sig
[1] 6.137878
[1] 1.930456
[1] 1.389408
> |=matrix(c(n/sig2,0,0,2*n/sig2),nrow=2,byrow=TRUE)
> |
[,1] [,2]
[1,] 10.36025 0.00000
[2,] 0.00000 20.72049
> mat_V=solve(l)
> mat_V
[,1] [,2]
[1,] 0.0965228 0.0000000
[2,] 0.0000000 0.0482614
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Example 15.10 — Estimate the covariance matrix in example 15.9 using the observed information
> # example 15.10 - Following the book
> sig3=sig2*sig; sigd=sig2*sig2;
> H=matrix(c(-n/sig2,-(2/sig3)*sum(log(x)-mu),-(2/sig3)*sum(log(x)-mu),
n/sig2-(3/sigd)*sum((log(x)-mu)”2)),nrow=2,byrow=TRUE)
>H
[,1] [,2]
[1,] -1.036025e+01 -3.973669e-15

[2,] -3.973669e-15 -2.072049e+01
> matV_H=solve(-H)
> matV_H

[,1] [,2]
[1,] 9.652279e-02 -1.851064e-17
[2,] -1.851064e-17 4.826140e-02
>
> #fusing numerical optimization
>

> minuslogliklognorm=function(theta){
+ -sum(-log(x)-log(theta[2])-0.5*log(2*pi)-0.5*(( (log(x)-theta[1]) / theta[2] )*2))
+ }
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> # Be aware of the starting point!
> # Numerical optimization could be erroneous with the zeros (Hessian matrix)
> theta.start=c(6,2)
> out=nIm(minuslogliklognorm,theta.start,hessian=TRUE)
Warning messages:
1: In log(theta[2]) : NaNs produced
2: In nim(minuslogliklognorm, theta.start, hessian = TRUE) :
NA/Inf replaced by maximum positive value
> out
Sminimum
[1] 157.7139
Sestimate
[1] 6.137875 1.389408
Sgradient
[1] -2.713500e-06 -2.659279e-07
Shessian
[,1] [,2]
[1,] 10.360257841 -0.004526871
[2,] -0.004526871 20.710188098
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Scode
[1]1
Siterations
[1] 7
> HH=outShessian # HH is the hessian of minus the log likelihood, i.e. HH is equal to
minus the hessian of the likelihood
> solve(HH) # inverse of HH
[,1] [,2]
[1,] 9.652270e-02 2.109811e-05

[2,] 2.109811e-05 4.828542e-02
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o What can we do when our interest is about a function of the parameters?

Estimation of a function of the parameters

Example: Assume that our interest, in the last couple of examples, was about the expected value of X,

thatis E(X) =exp(u+ c’/2).The point estimator is easy to obtain, using the invariance property of

the mle, and we get E(X) =exp(2 + 6~ /2). What are the expected value and the (approximate)
variance of this estimator?

o Theorem 15.16 — (Delta method) Let X, =(X,,,X, ,---,X,,) be a multidimensional variable of

1n>
dimension k based on a sample of size n. Assume that X is asymptotically normal with mean @ and
covariance matrix X/ n, where neither 8 nor X depend on n. Let g be a function of k variables that is

totally differentiable. Let G, = g(X,,,X,,. -, X,,). Then G, is asymptotically normal with mean g(8)
and variance (0g)’ £(9g)/n, where dg is the vector of the first derivatives, that is,
dg=(dg/06,,0g/96,,---,0g/96,)" and itis to be evaluated at 8, the true parameters of the original

random variable.
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o Comments:

o There are several presentations of the delta method

o When k =1, the theorem reduces to the following statement: Let & be an estimator of 6 that has
an asymptotic normal distribution with mean @ and variance % /n. Then g(é) has an asymptotic

normal distribution with mean g (@) and variance g’(6)* x(c” / n).

o Example 15.12 — Use the delta method the approximate the variance of the mle of the probability that
an observation from an exponential distribution exceeds 200. Apply this result to Data Set B.

As it is well known, the mle estimator of @ is 6 =X with E(é) =6 and Var(é) =60*/n.
We want to estimate Pr(X > 200)=e¢"? = g(0)
Pr(X >200)= g(8)=e 2

Delta method:

2 n2 2 —400/6
E(g@))= () =¢™* and Var(g(é’))“8’(0)2var(9)=(%e200’9] 4 20

41



Instituto Superior de Economia e Gestao
UNIVERSIDADE TECNICA DE LISEOA

Application to Data Set B: n=20; Estimate: § =1424.4
2002 e—400/1424.4

Pr(X > 200) = o(8) = ¢ 2% = 0.8690 ar( ¢(8)) = = 0.000744402
( )=8©0) = var((8) 20x1424.4°

95% Confidence Interval: 0.8690019 71.645x%x0.02728373, that is (0.8241; 0.9139)

o Example 15.13 - Construct a 95% confidence interval for the mean of a lognormal population using
Data set B. Compare this to the more traditional confidence interval based on the sample mean

Note that the sample size is too small to use asymptotic results!

Usual method
X+£1.96xs//n, i.e. 1424.4+1.96x3435.04 /~/20, that is (-81.07, 2929.87).
Note that this interval includes values that are not admissible (E(X) = g(8) > 0).

Delta method

dg
0:|:,U:| g(IL[,O')zexp(ﬂ+o-2/2) ag: gﬂ :|: g(/uao-)i|
o 98 | |og(uo0)
do
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A 2 2
9:[‘@ Var(é)zgz[o- /n } O-— : } (see example 15.9)
6 n 0 o’ /(2n) n 1/2
A . T _ O-_ 1 g(/u7o-)
var(g(9)) = (08) " (0g)/n = [g(1.0) o*g(ﬂ,a)]( . j[o y Z}Lg WI)}

2

:‘q

2
[¢(u.0) agw,a)/z][ slu.0 } (%j(g(ﬂ,a)2+%g(ﬂ,a)2J

g(u,o)
(149 exp] w17
n 2 P 2

From example 15.9 we know that the mle estimates are 1=6.1379 and 6 =1.3894. Then

A2 A2 A2
Vér(g(é)) =~ [%}x(l+%jxexp(ﬂ+%j = 280444

The 95% confidence interval is then 1215.75F1.96x+/280444 , that is, (177.79; 2253.71)

43



Instituto Superior de Economia e Gestao
UNIVERSIDADE TECNICA DE LISEOA

NON NORMAL CONFIDENCE INTERVALS
o Inthe previous section the confidence intervals are based on 2 assumptions:

1. The normal distribution is a reasonable approximation for the true distribution of the maximum
likelihood estimators (large samples);

2. When there is more than one parameter, the construction of separate confidence intervals is an
acceptable procedure.

o We will see an alternative procedure (the result is still asymptotic) which let us built confidence regions
to answer to point 2.

o The new procedure to define confidence intervals is based on the likelihood ratio tests (to be formally
presented in chapter 16 of Loss Models).

o Theidea is to include in the confidence interval (region) the values of @ with a greater likelihood, i.e.

our likelihood interval will be defined as {8: £(8) = ¢} with ¢ < ¢(8) to guarantee that the interval is not
empty.

o The question is: How to define ¢ in such a way that the procedure produces a 100(1 — &) % confidence

region?
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o The solution is then to define ¢ = K(é) —0.5%x g, (be aware of a typo in the book — ¢ = /(6) -0.5%q,,,

instead of the correct solution) where g, is the 1—«& quantile of a chi square distribution with degrees

of freedom equal to the number of estimated parameters. Keep in mind that this result is asymptotic.

o Example 15.14 — Use this method to construct a 95% confidence interval for the parameter of an
exponential distribution. Compare the answer to the normal approximation, using Data Set B.

Exponential distribution: ¢(8) = Z’;zl (— Inf—x; /9) =-nln@—-nx/6and H=%x.

Data Set B: n=20,x =1424.4,

Normal approximation

, n nx , n 2nx n 2nX n 2n n 6
r@)=—H+—7; ' @)=———7—; 1(0)=—E| — - =_ — =—; 1(0) =—
©) 0 6 © 0° 6’ © (92 0’ j (92 ezj 6’ ) n

The confidence interval is x F 1.96><)_c/\/;, that is, (800.129; 2048.67)

Non — normal approximation

f(é) =-nlnx—-n; ¢q,,s =3.841 (we are estimating 1 parameter)
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The interval is given by

—nln@—-nx/0=2-nlnx-—n—-05%x3.841<mb+x/0<Inx+1+1.9205/n

which has to be solved numerically (Inx +1+1.9205/20=8.35753). Using EXCEL’s solver we get
the interval (946.788; 2285.246)

Comment: To be rigorous we need to prove that the equation In8+x/6 =Inx—-1-1.9205/n has
only 2 roots and that the inequality is strict between the roots.

Challenging question: are you able to prove that?

o Example 15.15 — In example 15.4, the mle for a gamma model for Data Set B were & =0.55616 and

& = 2561.1. Determine a 95% confidence region for the true values.

Gamma distribution
n X n nx
o l(a,0)= Zjl((a'—l)lnxj —;f—alne—lnr(a)J =(@-1D), _Inx -, ~nané-nl(a)

o U&,0)=-162.2934
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o c=0(&0)-05%xq, =-1652889  (usinga 3

We must solve the inequality

12277576 % (¢ —1) —@ —20In6—-20InI'(ex) 2 -165.2889

>x=c(27,82,115,126,155,161,243,294,340,384,457,680,855,877,974,1193,1340,1884,2558,15743)
>
> minusloglikgamma=function(theta){
+ -sum(dgamma(x,shape=theta[1],scale=theta[2],log=TRUE))
+ }
>
> loglikgamma=function(a,b){
+ sum(dgamma(x,shape=a,scale=b,log=TRUE))
+ }
>
> theta.start=c(mean(x)*mean(x)/var(x),var(x)/mean(x))
> out=nIm(minusloglikgamma,theta.start,hessian=TRUE)
> out
Sminimum
[1] 162.2934
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Sestimate
[1] 0.556157 2561.146543

Sgradient
[1] -6.110668e-06 4.771822e-10
Shessian

[,1] [,2]
[1,] 82.442844018 7.808613e-03
[2,] 0.007808613 1.695060e-06
Scode
[1] 1
Siterations
[1] 35

> # Independent confidence intervals

> theta_mv=outSestimate

> invH=solve(-outShessian) # The function is minus the loglikelihood

> theta_mv_var=-diag(invH)

> linf=theta_mv-1.96*sqgrt(theta_mv_var); Isup=theta_mv+1.96*sqrt(theta_mv_var)
> linf; Isup;
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[1] 0.2686390 555.9871246

[1] 0.843675 4566.305962

>

> # Confidence region

> g=gchisq(0.05,2,lower.tail=FALSE)

> cc=-outSminimum-0.5*q # The function is minus the loglikelihood
>

> a=seq(.5*linf[1],2*Isup[1],(2*Isup[1]-.5*linf[1])/81)
> b=seq(.5*linf[2],2*Isup[2],(2*Isup[2]-.5*Iinf[2])/81)
>

> z=array(0,dim=c(length(a),length(b)))

> for(i in 1:length(a)) {

+ for(j in 1:length(b)) {

+  z[i,j]=loglikgammal(a[i],b[j])

+ )

+ }

> persp(a,b,z,theta=30,phi=30,ticktype="detailed")

> contour(a,b,z,level=c(cc))
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BAYESIAN ESTIMATION
o Until now discussion about estimation has assumed a frequentist approach, namely:
o The parameter of the population distribution is unknown but fixed (not random);

o The inference procedures are based not only on the observed sample but also on the population of
samples that could have been observed.

o The Bayesian approach assumes that our lack of knowledge about the parameters value should be
translated using probability distributions (consequently unknown parameters are treated as random

variables) and that only the observed data (and not the population of samples) is relevant to make
statistical inference.

Bayesian Inference

Model fyo(x16) } Bayes

Sample (x,x,,---,x,) —  Posterior distribution 7g, (61x)

— Model distribution fy,q (X 16)
Prior distribution 7(8)

Theorem
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Model distribution
¢ Theoretical model for the population: for instance Bernoulli, normal, ....
¢ Instead of considering a random sample X = (XI,XZ,- : -,Xn) — usually the sampling process

generates i.i.d. observations — we look at the observed sample x=(x,,x,,+,x, )

¢ Definition 15.9 — The model distribution is the probability distribution for the data as collected given
a particular value for the parameter. Its pdf is denoted by fy,o(X|6), where vector notation for x is

used to remind us that all the data appear here. Also note that this is identical to the likelihood
function, and so that name may also be used at times.

¢ Comments:
o If the observations are i.i.d., then L(@1x) = fy(x18) = H; fxe(x 10).

o Only the likelihood of the observed sample is relevant
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Prior distribution

o Definition 15.7 — The prior distribution is a probability distribution over the space of possible parameter
values. It is denoted by 7(€) and represents our opinion concerning the relative chances that various
values of @ are the true value of the parameter.

o Comments:

o The existence of a prior for @ (scalar or vector) is the core of Bayesian inference. From a theoretical
point of view it raises important questions about the concept of probability.

o From a practical point of view, the determination of the prior is a major problem of Bayesian
methods. In many situations we have some insights about possible parameter values but the main
difficulty is translating this knowledge into a probability distribution.

o Due to the difficulty of finding a prior, we often use an improper prior distribution (vague prior) or
we take advantage of conjugate priors.

o Definition 15.8 — An improper prior distribution is one for which the probabilities (or probability
density function) are nonnegative but their sum (integral) is infinite.
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o Comments:

o The improper prior is one possible solution when we have minimal knowledge about the parameter
behavior.

o Universal agreement on the best way to construct a vague (or non-informative) prior does not exist.

o However the use of the improper prior 7(8)=1/8, 8 >0 as a vague prior for a scale parameter is
quite consensual.

o Definition 15.23 — A prior distribution is said to be a conjugate prior distribution for a given model if the

resulting posterior distribution is from the same family as the prior (but perhaps with different
parameters).

54



Instituto Superior de Economia e Gestao
UNIVERSIDADE TECNICA DE LISEOA

Bayes Theorem: How to obtain the posterior distribution?

o Definition 15.12 — The posterior distribution is the conditional probability distribution of the
parameters, given the observed data. It is denoted 7y (61x).

o Theorem 15.14 — (Part a) The posterior distribution can be computed as

Jxio(X10)x7(6)
[ fuo(x10)x7(6)d6

Tox(01%) =

o Comment:

o This is the central purpose of Bayesian analysis: The posterior distribution tells us how our opinion
has changed once we observed the data (compared with the prior).

o In most situations we determine the posterior up to a normalizing constant. This constant can be
determined using the condition jﬂ'@,x (@1x)df@ =1 but it is obtained more easily when the posterior

belongs to a known family of distributions. In such cases we identify the core of the family and then
we get the constant (using for instance Appendix A or B of the book).

P(BIA)XP(A)
D P(BIA)XP(A)

o Remember Bayes’s formula: Partition {A,, A,,---}, event B, then P(A, | B) =

55



Instituto Superior de Economia e Gestao
UNIVERSIDADE TECNICA DE LISEOA

The predictive distribution

o Definition 15.13 — The predictive distribution is the conditional distribution of a new observation y

given the data x. It is denoted f,x (¥ IXx)

o Theorem 15.14 — (Part b) The predictive distribution can be computed as

Frx (3 1%) = [ fre(7160) T (81%)d0

Where f,o(y180) is the pdf of the new observation, given the parameter value.
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Example 15.17 — The following amounts were paid on a hospital liability policy

125 132 141 107 133 319 126 104 145 223.

The amount of a single payment has the single-parameter Pareto distribution with 8 =100 and «
unknown. The prior is a gamma distribution with parameters a =2 and & =1. Determine all of the
relevant Bayesian quantities.

-

Prior: 7(a)=ae™, >0 This means that @ ~ ¥(2,1) | E(a) = var(a) =2

Likelihood:

Lt =TT, /1@ =TT~ alOO“ x >100

10
= x, X

1

10]‘[10 1007 0 1 1000223469 X & o 0% 0.022346°

i=1"1

57



Instituto Superior de Economia e Gestao
UNIVERSIDADE TECNICA DE LISEOA

Posterior:
T (@ 1X) o< L) X)X () o< a'® X 0.022346% X rx e

= o/ xexp(@In0.022346)x ¢~ = g ¢ “( 00

—-4.80112cx a>0

:alle
We get the core of a gamma distribution with parameters 12 and 1/4.80112 and then we know the
normalizing constant which is 4.80112"2 /T'(12) =3.757995. As the posterior belongs to the same

family of the prior we said that we are using a conjugate prior for this model.

The point here is that the observed samples leads us to change our believes about & from a ¥(2,1)
toa ¥(12,0.20828) and now E(a|x)=2.49942 and var(a|x) =0.52059.

We can draw both densities on the same graph to visualize the differences:

> x=seq(0,6,by=0.2)

> plot(x,dgamma(x,shape=1,scale=1),type="1",ylab="density",xlab="alpha")
> y=dgamma(x,shape=12,scale=0.208285) # posterior

> lines(x,y,type="1",lty=2)

> text(3.5,0.45,"posterior"); text(0.8,0.7,"prior")
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Predictive:

G19=["fo (vl o @ x)da= [~ FY0 37579951 62102088 4
Jrx (¥ o Jraly AIX 0 yal

:3-757995 J‘°°a,ue—a/o.zoszsmln100—a1n Ydo = 3.757995 J‘°° alZe—a(1/0.20828—ln100+ln y)da,

y g
_ Mjwalze_a(o'19595l+ln Vo y>100
y 0

The integrand is the core of a gamma density function with parameters 13 and 1/(0.195951+1n y).
Then we can use the usual normalizing constant to calculate the integral. We get

T'(13)%3.757995 3.757995x 12!
Jox(Y1x) = 3. . 13
(0.195951+Iny)”° xy (0.195951+Iny) Xy

, y>100

The density does not look familiar but it can be proved that InY —In100has a Pareto distribution.

y=seq (100,400, by=20)
yyl=2*(y~(-1))*((1+1log(y/100)) " (=-3));
plot(y,yyl, type="1",ylab="predictive density", xlab="y")
yy2=3.757995*factorial (12)*(y"~(=1))*((0.195951+1og(y)) " (-13));
lines(y,yy2,type="1",1lty=2)
text (130,0.005, "before"),; text(150,0.010,"after")
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From a Bayesian point of view the analysis is complete when we specified the posterior distribution which

guantifies our knowledge about @ after the observation of the sample. However, for practical purposes

point estimation and/or “confidence interval” are, most of the time, needed. The problem is how to sum

up a distribution in one point or using an interval. For point estimation the usual Bayesian solution is to use

a loss function.

Bayesian point estimation

©)

Definition 15.15 — A loss function lj(éj,é?j)describes the penalty paid by the investigator when 9]. is

the estimate and 6, is the true value of the jth parameter.
Comment: The loss function is random since it depends on 6.

Definition 15.16 — The Bayes estimate for a given loss function is the one that minimizes the expected
loss, given the posterior distribution of the parameter in question.

Definition 15.17 — For squared-error loss, the loss function is (all subscripts are dropped for
convenience) l(é, 0) = (9 —0)*. For absolute loss it is l(é, 0)= ‘67— 8‘. For zero-one loss it is l(é, 6)=0if
0 = 6 and 1 otherwise.

Comment: Strictly speaking, Definition 15.17 defines the loss functions up to a multiplicative constant.
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Theorem 15.18 — For squared-loss, the Bayes estimate is the mean of the posterior distribution; for

absolute loss it is the median and for zero-one loss it is the mode.
Challenging question: Prove the theorem for the squared loss function (easier) and other functions.
Comments:

o There is no guarantee that the posterior’s mean exists (or the mode) or that the median is unique.

o When no otherwise specified, the term Bayes estimate refers to the posterior mean (squared-loss
function).

Example 15.18 — Determine the three estimates of a (example 15.17 continued)

The posterior is a gamma distribution with parameters 12 and 0.20828. Then E(a|x)=2.49942, the
mode is 11x0.20828 =2.291132 and the median has to be determined numerically (2.430342).

Sometimes the expected value of the predictive distribution is of interest. We can calculate it using the
predictive and it can be shown that E(Y |x) = nyy,x(y |X)dy = Iﬂ@lx(ﬁ IX)E(Y 10)dé (see Loss

Models).
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Bayesian HPD credibility set

o Definition 15.19 — The points a < b define a 100 x (1 — )% credibility interval for t9j, provided that
Prla<6, <b)z1-a.

o Comments:

o The term credibility is used to underline the differences between the frequentist (confidence
interval) and the Bayesian approaches. This term has no relation with credibility theory.

o The inequality is due to discrete distribution

o Definition 15.19 does not produce a unique solution for the credibility interval. Usually we look for
the shortest interval.

o Theorem 15.20 - If the posterior random variable 6, Ix is continuous and unimodal, then the

100Xx (1— ) credibility interval with the smallest width, b —a, is the unique solution to

b
[ 7ox(6;1%)d0 =1-a and 7q x(b1X) =T x(alX)
This interval is a special case of a highest posterior density (HPD).

o Comment: The posterior cannot have any local maximum except the mode which is unique.
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o Example 15.20 — Determine the shortest 95% credibility interval for the parameter @ (example 15.17
continued)

Let us use EXCEL’s solver to determine the interval

Clipboard Fant L]

E10 - k|

iy B L D
1 Posterior Gamma 12 0.20828469
2
3 a b
4 |Limits 0.5 5
5 |Objective 0.99748 8.473E-06 0.99748392
6 constraint 0.006872 0.0001664 0.00688849
7
2

In cells C4 and D4 we put two initial values for the limits of the interval

In cells C5 and D5 we calculate the value of the distribution function at points a and b respectively. Cell
B5 contains the probability of the interval.

In cells C6 and D6 we calculate the value of the posterior density function at points a and b respectively.
Cell B6 contains the difference between the density at point b and the density at point a.

Now we want to get the value 1—a =0.95 in cell (5,B) and the value O in cell (6,B).
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Solver Parameters ['5—<| _ .
— E10 a Jx |
Set Targst Cell: = [ | goke | A B c D
Equal Ta: Ma: Min Walue of: 0,95 i
Eychangingcg-li:_ COMn @ I—I ; Posterior Gamma 12 0.20828469
| $C54:5044 GUEss 3 a h
Subject ta the Constraints: 4 |Limits 1.1832009 3.93840632
$B46 =0 add 5 Objective 0.95 (0.0138071 0.96380667
6 constraint 4.5E-07 0.0815656 0.08156603
7
Help

The credibility interval is then (1.1832009; 3.93840632)
To get an approximate solution we place a probability of 0.025 at each end - (1.29148; 4.09947).

o Definition 15.21 — For any posterior distribution the 100X (1 — @)% HPD credibility set is the set of
parameter values C such that Pr(6; € C) 21—« and C = ié?j 7o x (0, 1%) 2 c} for some ¢, where cis
the largest value for which the previous inequality holds.

o Sometimes computing posterior probabilities is difficult but computing posterior moments is easier. We

can them using the Bayesian central limit theorem.
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o Theorem 15.22 — Bayesian central limit theorem — If 7(6) and f,o(x16) are both twice differentiable

in the elements of @ and other commonly satisfied assumptions hold, then the posterior distribution of
® given X =x is asymptotically normal.

o Comment: The “commonly satisfied assumptions” are like those presented with Theorem 15.5

o Example 15.21 — Construct a 95% credibility interval for ¢ using the Bayesian central limit theorem
(example 15.17 continued).

The posterior is ¥(12,0.20828) and then E(a|x)=2.49942 and var(a|x)=0.52059. The credibility

interval is then 2.49942 +1.96x+/0.52059 ,i.e. (1.085238, 3.913594). Note that the method is not
appropriate for this example as the sample size is far from large.

r(0)x; r@ % TY" (x.)
Lo10=TT fxex, 10 =TT, Aty § IC

q(0) q(60)"
X.+ Uk
Withk>"=k+nand,u>‘<=z e = k X 1+ XX.
k+n k+n k+n

o Computational issues: Bayesian analysis proceeds by taking integrals (or sums) and most of the time
numerical integration is needed.
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